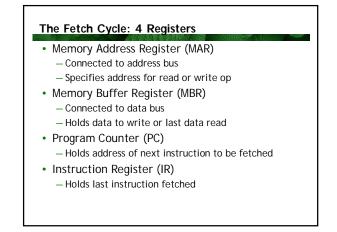
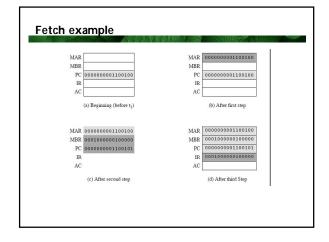

Computer Organization and Architecture


Chapter 15 Control Unit Operation

Micro-Operations

- Execution of an instruction (the instruction cycle) has a number of smaller units – Fetch, indirect, execute, interrupt, etc
- Each part of the cycle has a number of smaller steps called micro-operations


 Discussed extensive in pipelining
- Micro-ops are the fundamental or atomic operations of the processor

Fetch Sequence

- Address of next instruction is in PC
 - Address (MAR) is placed on address bus
 - Control unit issues READ command
- Result (data from memory) appears on data bus – Data from data bus copied into MBR
 - PC incremented by instruction length (in parallel with data fetch from memory)
- Data (instruction) moved from MBR to IR
 - $-\operatorname{MBR}$ is now free for further data fetches

Fetch Sequence (symbolic)

- t1: MAR <- (PC)
- t2: MBR <- (memory)
- PC <- (PC) +1
- t3: IR <- (MBR)
- (tx = time unit/clock cycle)
- or
- t1: MAR <- (PC)
- t2: MBR <- (memory)
- t3: PC <- (PC) +1
- IR <- (MBR)

Fetch Sequence - Symbolic

- The fetch cycle actually consists of 3 step and 4 microops
- Each micro-op consists of moving data in or out of a register
- Those that do not conflict can be executed in parallel
 - t1: MAR <- (PC) t2: MBR <- (memory) PC <- (PC) +1 t3: IR <- (MBR)
 - MAR <- (PC) t1:

or

- MBR <- (memory) t2:
- PC <- (PC) +1 t3:
- IR <- (MBR)

Rules for Grouping Micro-ops

- Proper sequence must be followed
 - MAR <- (PC) must precede MBR <- (memory)
- Conflicts must be avoided
 - Must not read & write same register in same cycle - MBR <- (memory) & IR <- (MBR) must not be in same
- cycle • Also PC <- (PC) +1 involves addition
 - Might need to Use ALU May need additional micro-operations

Indirect Cycle

 Once the instruction has been fetched we need to fetch source operands.

- Assume one-address instruction format with direct and indirect addressing allowed
- Indirect cycle (memory at addr contains address of operand):
 - t1: MAR <- (IR_{address}) address field of IR
 - t2: MBR <- (memory)
 - t3: IR_{address} <- (MBR_{address})
- Now MBR contains direct address of operand
- IR is updated with direct address of operand
- IR is now in same state as if direct addressing had been used

Interrupt Cycle

- At end of execute cycle, processor tests interrupt signal. If set, an interrupt cycle occurs
 - MBR < -(PC)t1·
 - t2: MAR <- save-address
 - PC <- routine-address
 - t3: memory <- (MBR)
- This is a minimum. Most processors provide multiple types of address
 - So there may be additional micro-ops to get addresses
 - Note that saving context is done by interrupt handler routine, not micro-ops

Execute Cycle (ADD)

- Fetch, Indirect and Interrupt cycles are simple and predictable
- Execute cycle is different for each instruction
- We'll look at several examples
- ADD R1, X add the contents of location X to Register 1, result in R1 t1: MAR <- (IR_{address})
 - t2: MBR <- (memory)
 - t3: R1 <- R1 + (MBR)
- Example is simplified. We may need additional micro-ops to get register reference from IR or stage ALU input or output in an intermediate register

Execute Cycle (ISZ)

- ISZ X increment and skip if zero
- Contents of location X are incremented by 1; if the result is 0 the next instruction is skipped
 - -t1: MAR <- (IR_{address})
 - t2: MBR <- (memory)
 - t3: MBR <- (MBR) + 1
 - t4: memory <- (MBR)
 - if (MBR) == 0 then PC <- (PC) + 1</p>

· Notes:

- Conditional action (test and increment if 0) is a single micro-op
- Can be performed in same time unit as store to memory

Execute Cycle (BSA)

- BSA X Branch and save address
 - $-\operatorname{Address}$ of instruction following BSA is saved in X
 - Execution continues from X+1
 - $-\,\mathrm{A}$ straightforward way to provide subroutine calls
 - But you can get into trouble with recursive calls; most modern machines use a stack
 - t1: MAR <- (IR_{address})
 - MBR <- (PC)
 - t2: PC <- (IR_{address})
 - memory <- (MBR) t3: PC <- (PC) + 1

Instruction Cycle

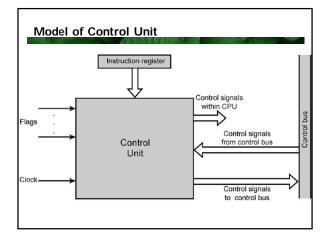
- Each phase is decomposed into a sequence of elementary micro-ops
- We have one sequence for fetch, indirect, and interrupt cycles, but execute cycle has one sequence of micro-operations for each opcode
- To complete the picture we need to tie sequences together into the instruction cycle
 - Assume new 2-bit register; the instruction cycle code (ICC) designates which part of cycle processor is in
 - 00: Fetch
 - 00: retch
 - 10: Execute
 - 11: Interrupt

Flowchart for Instruction Cycle

Control of the Processor

- Functional Requirements
 - Define the basic elements of the processor
 - Describe the micro-operations that the processor performs
 - Determine the functions control unit must perform in order to execute the micro-ops
- We've already completed steps 1 and 3

Basic Elements of Processor


- Define the basic elements of the processor:
 - ALU
 - Registers
 - Internal data pahs
 - External data paths
 - Control Unit

Types of Micro-operation

- Describe the micro-operations that the processor performs
 - Transfer data between registers
 - Transfer data from register to external interface
 - Transfer data from external interface to register
 - Perform arithmetic or logical operations using registers

Functions of Control Unit

- · Control Unit performs two basic tasks
- Sequencing
 - Causing the CPU to step through a series of microoperations
- Execution
 - Causing the performance of each micro-op
- Key to operation is the use of control signals

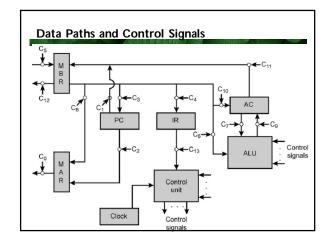
Control Unit Inputs

Clock

- One micro-op (or set of parallel micro-ops) per clock cycle
- Instruction register
 Contains op-code for current instruction
 Determines which micro-ops are performed
- Flags
 - Determine state of CPU and results of previous operations
- Control signals from control bus
 - The control lines from the system bus are input signals to the control unit

Control Unit Outputs

- · Control signals within the processor
 - Cause data movement from reg to reg
 - Activate specific ALU functions
- To control bus
 - Control signals to memory
 - Control signals t
 - o I/O modules


Example Control Signal Sequence - Fetch

• MAR <- (PC)

- Control unit activates signal to open gates between PC and $\ensuremath{\mathsf{MAR}}$
- MBR <- (memory) uses these simultaneous signals
 Open gates between MAR and address bus (places MAR on
 - address bus)
 - Memory read control signal is sent on the control bus
 - Open gates between data bus and MBR, allowing contents of data bus to be stored in MBR
 - Control signals to PC increment logic circuit
- After this is complete the control unit examines IR to determine whether to perform an indirect cycle or an execute cycle

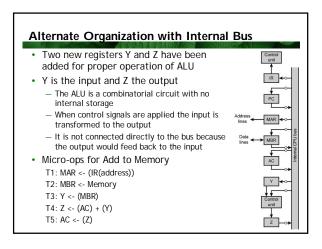
Control Signals Example

- This model is a simple processor that has one register AC (accumulator)
- Diagram indicates data paths between elements
 - Terminations of control signals are labeled $\rm C_n$ and indicated by a circle
 - Inputs are clock, flags, IR
- With each clock cycle the control unit reads all of its inputs and emits a set of control signals

Control Signal Destinations

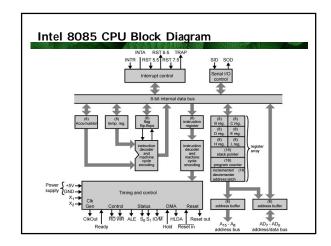
• Data paths

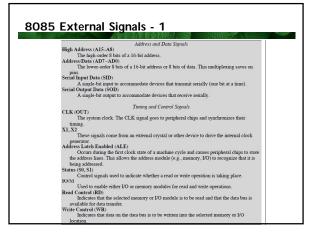
- Switching & connecting data sources to destinations;
 e.g., connect IR to MBR on instruction fetch
- ALU
 - Signals activate various logic circuits in ALU
- System Bus — Control signals such as memory read or write

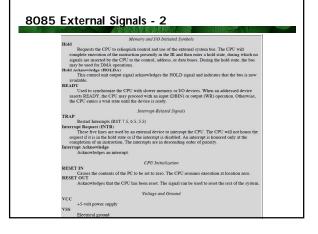

Control Signals for Fetch, Interrupt, Indirect

	Micro-operations	Active Control Signals
	$t_1: MAR \leftarrow (PC)$	C2
Fetch:	$t_2: MBR \leftarrow Memory$ $PC \leftarrow (PC) + 1$	C ₅ , C _R
	$t_3: IR \leftarrow (MBR)$	C ₄
	$t_1: MAR \leftarrow (IR(Address))$	C ₈
Indirect:	$t_2: MBR \leftarrow Memory$	C ₅ .C _R
	t_3 : IR(Address) \leftarrow (MBR(Address))	C ₄
	$t_1: MBR \leftarrow (PC)$	C1
Interrupt:	$t_2: MAR \leftarrow Save-address$ PC ← Routine-address	
	t_3 : Memory \leftarrow (MBR)	C ₁₂ , C _W

 $C_R = Read \text{ control signal to system bus.}$ $C_{nv} = Write \text{ control signal to system bus.}$

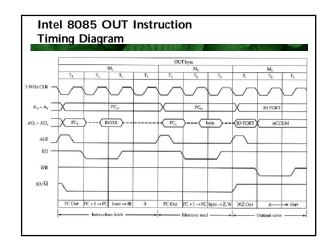

Internal Organization


- Control signals diagram shows a variety of data paths in a very simple processor
 - Complexity would be to high in any real processor to have hardwired data paths
 - Usually a single internal bus is used
 - Gates control movement of data onto and off the bus
- Control signals control data transfer to and from external systems bus



The Intel 8085

- An 8-bit microprocessor produced in 1977
- Some key components that may not be obvious:
 - Incrementer/Decrementer address latch: add or subtract 1 from SP or PC. Saves time by not using ALU
 Interrupt Control: handles multiple levels or interrupt
 - signals – Serial I/O control: interface for serial devices (1 bit
 - at a time)


Intel 8085 Pin	X ₁ —•[1 40 2 39	
Configuration	X ₂ →►	3 38	
	SOD 🗲	4 37]—► CLK (out
	SID —	5 36] ⊣ — Reset in
	Trap 🗲 🗌	6 35] ∢ — Ready
	RST 7.5 —►[7 34]— → IO/M
	RST 6.5 🗲 🗌		
	RST 5.5	9 32] ∢ — Vpp
	INTR —		
	INTA 🗲 🗌		
		12 29	
	AD ₁ ◀►[13 28]—► A ₁₅
	$AD_2 \blacktriangleleft b$		
	AD ₃		
	$AD_5 $		
		100 March 100 Ma	
		12.0	
	Vss —	20 21] — ► A ₈

Control Unit

- Two components
 - Instruction decoder / machine cycle encoding
 - Timing and control
- Essence is Timing and Control
 - Inputs are clock, current instruction and some control signals
 - Outputs are control signals to processor and external bus

Instruction Timing

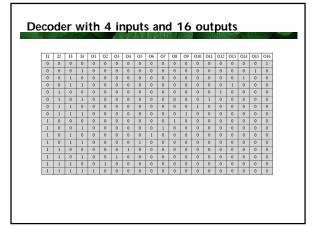
- Timing is synchronized by the clock
 - Instruction cycle is divided into 1 to 5 machine cycles depending on instruction
 - Each machine cycle is divided into 3 to 5 states
 - Each state lasts one clock cycle
 - Processor performs one or more parallel micro-ops per state (determined by control signals)
 - Machine cycles are defined to equivalent to bus accesses
 - Determined by number of processor communicates with external devices
 - Ex: 16-bit read mem instruction needs two cycles to fetch instruction plus one cycle for execution
 - Compare with modern processors where bus is much slower than CPU

External Control Signals Examples

- Instruction is OUT byte (output to IO device); 3 machine cycles
- 1. Instruction opcode is fetched
- 2. 2^{nd} half of instruction is fetched with I/O address
- 3. Contents of AC written out to device over data bus

Machine Cycle Detail M1

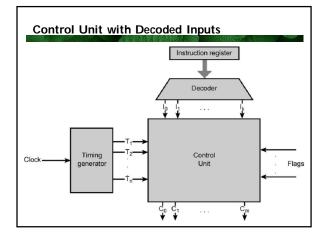
- Address Line Enable (ALE) signal start of each machine cycle; alerts external circuits
- In state t1 of m1 control unit set IO/M to indicate memory op
- Contents of PC placed on address bus and address/data bus
 With falling edge of ALE other devices latch (store) the
- addr
- Timing state T2 the memory module places contents of memory location on addr/data bus
 Control unit sets RD signal to indicate a read but waits until T3 to copy the data
 - Gives memory module time to put the data on the bus and stabilize signal levels
- State T3 is bus idle state during which processor decodes the instruction


Implementation

- Control unit design techniques are either
 - hardwired
 - Or microprogrammed
- In a hardwired implementation the control unit is a state machine
- Input logic signals are transformed into output signals (control signals)

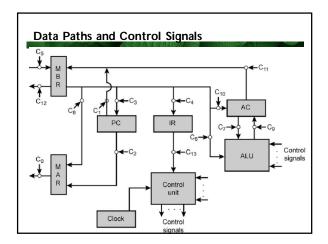
Hardwired Implementation (1)

Control unit inputs:


- Flags and control bus
 - Each bit means something
- Instruction register not directly useful to the unit
 Op-code causes different control signals for each different
 - instruction
 - Unique logic for each op-code
 - Decoder takes encoded input and produces single output
 - *n* binary inputs and 2^{*n*} outputs
 - Each of the 2ⁿ input patterns will produce a unique output
- Example shows a very simple 4-bit decoder

Hardwired Implementation (2)

Clock


- Repetitive sequence of pulses
- Useful for measuring duration of micro-ops
- Must be long enough to allow signal propagation
- Different control signals at different times within instruction cycle
- $-\,\text{Need}$ a counter with different control signals for t1, t2 etc.

Operation of Control Unit For each control signal, derive a Boolean expression of signal as function of inputs Consider logical view of control unit data paths discussed earlier Look at control signal C5 - Causes data to be read from external device into MBR - Used by fetch T2 and indirect T2; sometimes by Execute We define two new control signals P and Q that are interpreted as PQ = 00 Fetch cycle PQ = 01 Indirect cycle PQ = 10 Execute cycle PQ = 11 Interrupt cycle

Boolean expression for C5

- The following expression defines C5 for fetch
 and indirect
 - C5 = (~P ^ ~Q ^ T2) | (~P ^ Q ^ T2)
- For execute, we need a control signal for each instruction
- Assume we have three instructions that read from memory (LDA, ADD, AND)
 C5 = (-P^-Q^T2) | (-P^QC^T2)
 | (P^-Q^(LDA | ADD | AND)^T2)
- Repeat this process for each control signal
- Result is a set of Boolean equations that define the behavior of the control and therefore the processor

	Micro-operations	Active Contro Signals
	$t_1: MAR \leftarrow (PC)$	C2
Fetch:	$t_2: MBR \leftarrow Memory$ $PC \leftarrow (PC) + 1$	C ₅ , C _R
	$t_3: IR \leftarrow (MBR)$	C ₄
	$t_1: MAR \leftarrow (IR(Address))$	C ₈
Indirect:	t ₂ : MBR ← Memory	C5, CR
	$t_3: IR(Address) \leftarrow (MBR(Address))$	C ₄
	$t_1: MBR \leftarrow (PC)$	C ₁
Interrupt:	t_2 : MAR ← Save-address	
	PC - Routine-address	
	t ₃ : Memory - (MBR)	C ₁₂ , C _W

Problems With Hard Wired Designs

- Complex sequencing & micro-operation logic
- Difficult to design and test
 - With modern processors the number of Boolean equations is huge and implementation of combinatorial circuit is very difficult
- Inflexible design
 - Difficult to add new instructions
- Microprogramming offers a simpler and easier approach