
1

Chapter 14
Instruction Level Parallelism and Superscalar
Processors

Computer Organization and Architecture What does Superscalar mean?

• Common instructions (arithmetic, load/store,
conditional branch) can be initiated and executed
independently in separate pipelines
— Instructions are not necessarily executed in the order

in which they appear in a program
— Processor attempts to find instructions that can be

executed independently, even if they are out-of-order
— Use additional registers and register renaming to

eliminate some dependencies

• Equally applicable to RISC & CISC
• Quickly adopted and now standard approach for

high-performance microprocessors

Why Superscalar?

• Term was coined in 1987; first such processors
were roughly a year later

• Most machine operations are on scalar quantities
(see RISC notes)

• So if we improve these operations we can get a
significant overall improvement

• Two main ideas:
— Execute instructions concurrently and independently

in separate pipelines
— Improve throughput of concurrent pipelines by

allowing out-of-order execution

General Superscalar Organization

Speedup with superscalar architectures

• Results vary considerably depending on
hardware and applications being simulated

Superpipelining

• An alternative approach to performance
improvement
— Many pipeline stages need less than half a clock

cycle
— So we can double the internal clock speed to get

two tasks per external clock cycle (Example MIPS
R4000)

2

Superscalar vs
Superpipeline Instruction Level Parallelism

• Instruction level parallelism is the degree on
average by which the instruction of a program
can be executed in parallel

• Achieved by:
— Compiler based optimization
— Hardware techniques

• Limited by:
— True data dependency
— Procedural dependency
— Resource conflicts
— Output dependency
— Antidependency

True Data Dependency
ADD eax,ecx
MOV ebx, eax

• We can fetch and decode the second instruction
in parallel with the first

• But we cannot execute the second instruction
until the first is finished
— The second instruction has to read the results of the

first instruction
• Also called “flow dependency” or “read-after-

write” dependency
• A fairly obvious general rule is that any

instruction has to be delayed until its inputs are
available

A note on terminology
• Everybody agrees that this instruction sequence has a

data hazard, and that it is a “true data dependency”
ADD eax, ecx
MOV ebx, eax

• Unfortunately, in the literature some people describe
this as “read after write” (RAW) while others describe
it as “write after read” (WAR)
— The RAW description describes the instruction sequence as it

appears in the instruction stream and as it should be correctly
executed by the processor. The Read MUST take place after
the Write

— The WAR description describes the hazard, i.e., it describes
the incorrect execution sequence where the Write actually
occurs after the read, so the result is not correct

• The textbook uses RAW in Ch. 12 and WAR in Ch. 14.
• We will use the RAW approach (describe the instruction

stream as it should be executed)

True Data Dependency
ADD r1,r2 ;(r1 <- r1+r2;)
MOV r3,r1 ;(r3 <- r1;)

• Note that these instructions may not cause a
delay in a simple pipeline

• But consider this sequence
MOV ebx, memvar
MOV eax, ebx

• Typical RISC processor requires 2 or more
cycles to read from memory

• Can be hundredsof cycles if cache miss
• Pipeline is stalled until load completes

Procedural Dependency

• We cannot execute instructions after a branch
in parallel with instructions before a branch

• Also, if the instruction length is not fixed,
instructions have to be decoded to find out
how many fetches are needed

• This prevents simultaneous fetches
— This suggests that superscalar techniques are more

easily applied to RISC machines
— CISC resolution is to divide the fetch/decode stages

into very small stages and use a prefetch queue

3

Resource Conflict

• Two or more instructions requiring access to
the same resource at the same time
— Memory
— Cache
— Register-file ports
— Functional units (adder, shifter)

• A resource conflict has a similar effect to true
data dependency

• But we can duplicate resources to reduce some
contention whereas we can never eliminate a
data dependency

• Slow operations can be divided into smaller
pipeline stages to minimize delays

Effect of
Dependencies

Design Issues

• Instruction level parallelism
— Occurs when instructions in a sequence are

independent and execution can be overlapped
— Governed by data and procedural dependency
Parallel execution Sequential Execution
load r1,r2 add r3,r3,1
add r3,r3,1 add r4,r3,r2
add r4,r4,r2 store [r4], r0

• Machine Parallelism
— A measure of the ability to take advantage of

instruction level parallelism
— Governed by number of parallel pipelines and speed

and sophistication of measures taken to find
independent instructions

Factors

• Instruction Level Parallelism
— Instruction set architecture
— Application program
— Operation latency

• Machine Parallelism
— Number of parallel pipelines
— Ability to find independent instructions

Instruction Issue

• Instruction issue is the process of initiating
instruction execution
— Occurs when decoded instruction moved to first

execute phase
• Instruction issue policy is the protocol used to

issue instructions
• Processor looks ahead to locate instructions

that can be executed
• 3 types of orderings are important:

— Order in which instructions are fetched
— Order in which instructions are executed
— Order in which instructions change registers and

memory

Instruction Issue Policy

• To optimize pipeline execution processor will
need to alter one or more orderings

• But the result of the computation must be
correct

• Three general policy categories
— In-order issue with in-order completion
— In-order issue with out-of-order completion
— Out-of-order issue with out-of-order completion

4

Example Machine

• Examples assume the following:
— CPU has three functional units: two integer ALUs and

one floating point ALU
— The CPU can fetch and decode two instructions at a

time
— There are two instances of the write-back pipeline

stage

In-Order Issue
In-Order Completion

• Issue instructions in the order they occur
— Not very efficient
— Instructions must stall if necessary (conflict for

functional unit or dependency)

Assumptions and Constraints

I1 executes in 2 cycles I3,I4 conflict for func. unit

I5 depends on I4 result I5,I6 conflict for func.unit

In-Order Issue Out-of-Order Completion

• With out-of-order completion any number of
instructions can be in the pipeline – to the limit
of machine parallelism

• Here I2 runs to completion before I1
• As a result I3 completes earlier

Output (write-after-write) dependency

• Consider
R3 <- R3 + R5 (I1)
R4 <- R3 + 1 (I2)
R3 <- R5 + 1 (I3)
R7 <- R3 + R4 (I4)

— I2 depends on result of I1 - data dependency
— I4 depends on result of I3 – data dependency
— What about I3 and I1?
— If I3 completes before I1, the result from I1 will be

wrong for I4

• The problem here that both I1 and I3 write to
R3. In general writes must be completed in-
order

Other complications

• With out-of-order completion processor
interrupt and exception handling is more
complex

• Instructions ahead of the current instruction
may have already completed

• Note however that WAW dependencies can
sometimes be resolved by simply using a
different register

Out-of-Order Issue
Out-of-Order Completion

• With in-order issue the processor stops
decoding instructions when a dependency or
conflict is detected
— Cannot look ahead of the point of conflict to find

other instructions to execute
• To allow out-of-order issue decouple the

decode pipeline from execution pipeline
— Can continue to fetch, decode and place

instructions in a buffer (the instruction window)
until this pipeline is full

— When a functional unit becomes available an
instruction can be executed

— Since instructions have been decoded, processor can
look ahead

5

Instruction Window

• Buffer that holds decoded instructions is called
the instruction window

• When a functional unit becomes available an
instruction is issued to the execute unit

• Any instruction can be issued provided
— It can execute in the available functional unit
— No conflicts or dependencies block the instruction

Out-of-Order Issue Out-of-Order Completion
(Diagram)

Assumptions and Constraints

I1 executes in 2 cycles I3,I4 conflict for func. unit

I5 depends on I4 result I5,I6 conflict for func.unit

Note that because I5 depends on I4, but I6 does not we can
issue I6 before I5

Antidependency (write-after-read dependency)
• Same example as write-after-write:

R3 <- R3 + R5 (I1)
R4 <- R3 + 1 (I2)
R3 <- R5 + 1 (I3)
R7 <- R3 + R4 (I4)
— I3 can not complete before I2 starts as I2 needs a value in R3

and I3 changes R3
— “Antidependency” used because constraint is similar to true

data dependency but reversed: I3 destroys a value that I2 uses
— To find antidependencies look for register overwriting

instructions and examine prior instructions
— Note that we also have

– an output dependency with respect to I1 and I3
– True data dependencies with in I2/I1 and I4/I3

Register contention

• True data dependencies and resource conflicts
are attributable to the flow of data through a
program and the sequence of execution

• Output dependencies and antidependencies are
attributable to contention for registers and arise
because the values in registers may not reflect
the sequence of values dictated by program flow

• Compiler register optimization can increase
contention by maximizing registers usage

Register Renaming

• One easy way to resolve resource contention is
to increase or duplicate resources

• Allocate registers dynamically
— i.e. actual registers are not specifically named
— New register values are created when an instruction

references a register as a dest operand
— Subsequent instructions that access that value as a

source operand are revised to refer to the register
actually containing the value

Register Renaming example
R3b <- R3a + R5a (I1)
R4b <- R3b + 1 (I2)
R3c <- R5a + 1 (I3)
R7b <- R3c + R4b (I4)

• Register reference without subscript refers to a
logical register in the instruction

• With subscript it is a hardware register actually
allocated

• Note R3a R3b R3c
• I3 can be issued immediately when EU is

available

6

Machine Level Parallelism

• Three techniques for enhancing superscalar
performance:
— Duplication of Resources
— Out of order issue
— Register Renaming

• It is probably not worth duplicating functional
units without register renaming

• In order to effectively utilize duplicated
resources we need an instruction window that
is large enough for effective lookahead (more
than 8)

Speedups of Machine Organizations Without
Procedural Dependencies

Branch Prediction

• The 80486 fetches both next sequential
instruction after branch and branch target
instruction

• Because there are two pipeline stages between
fetch and execute we still have a two cycle
delay when the branch is taken

RISC - Delayed Branch

• Calculate result of branch before unusable
instructions are pre-fetched

• Always execute a single instruction
immediately following branch

• Keeps pipeline full while fetching new
instruction stream

• Not as good for superscalar processors
— Multiple instructions need to execute in delay slot
— Instruction dependence problems

• So we revert to branch prediction

Superscalar Execution Instruction commit

• Some instructions may have been executed out
of order

• Others may need to be discarded
• Do not update program-visible registers and

permanent storage immediately
• Retain in temp storage until the sequential

model would have executed them

7

Superscalar Implementation Summary

• Simultaneously fetch multiple instructions
• Logic to determine true dependencies involving

register values
• Mechanisms to communicate these values
• Mechanisms to initiate multiple instructions in

parallel
• Resources for parallel execution of multiple

instructions
• Mechanisms for committing process state in

correct order

Pentium 4

• The 80486 was a straightforward CISC machine
• Pentium added some superscalar components

— Two separate integer execution units

• Pentium Pro was a full blown superscalar
implementation

• Subsequent models refined & enhanced the
superscalar design

Pentium 4 Block Diagram Pentium 4 Operation

1. Processor fetches instructions from memory in
static program order.

2. Each instruction is translated into one or more
fixed length RISC instructions (micro-operations)

3. Execute micro-ops on superscalar pipeline
— micro-ops may be executed out of order

4. Processor commits results of micro-ops to
register set in original program flow order

• Outer CISC shell with inner RISC core
• Inner RISC core pipeline at least 20 stages

— Some micro-ops require multiple execution stages
– Longer pipeline (up to 20 stages)

— c.f. five stage pipeline on x86 up to Pentium

Pentium 4 Pipeline Pentium 4 Front end
• The in-order front end is part of the machine that is

outside the true pipeline
• It feeds into L1 instruction cache called trace cache

(start of pipeline)
— Processor operates from trace cache; cache miss causes L2

cache lookup and front end feed to trace cache
— Fetch-decode unit uses branch target buffer (BTB) and

instruction TLB to determine cache line in L2 cache
— The I-TLB translates linear addresses into physical addresses

that are presented to L2

• 64 bytes are fetched at a time; default sequential but
can be altered via branch prediction and the BTB

8

Generation of micro-ops

• The Fetch/decode unit scans instructions to
determine instruction boundaries – some are as
long as 18 bytes

• Each Pentium instruction is translated to 1-4
micro-ops (118 bit fixed length)
— C.f. RISC 32-bit instruction

• Generated micro-ops are stored in trace cache

Trace Cache next instruction pointer
• First two pipeline stages deal with selection of

instructions from trace cache
• This is a separate branch prediction mechanism from

fetch/decode unit
• BTB used as described in Ch 13
• BTB is 4-way set associative cache with 512 lines

— Address of branch is tag
— BTB includes last dest address and 4-bits of history

• BTB is a two-stage branch prediction mechanism with 4
bits of history data because pipeline penalties are
large

• Static prediction for new branches
— Not IP-relative (RET) predict taken
— IP-relative backward branches: predict taken
— IP-relative forward branches: predict not taken

Pentium 4 Pipeline Operation (1) Trace Cache Fetch

• Trace caches takes micro-ops and assembles
them into program-ordered sequences called
traces

• Micro-ops are fetched sequentially subject to
branch prediction logic

• A few instruction require more than 4 micro-
ops
— These are transferred to microcode ROM for

sequencing
— Microcode ROM is a programmed control unit that

contains 5+ micro-op sequences for complex
machine instructions

Drive

• The fifth stage delivers decoded sequences
from trace cache / microcode ROM to the
register renaming and allocation module

Pentium 4 Pipeline Operation (2)

9

Out of order execution logic

• Reorders micro-ops for fast execution
• Allocate stage allocates resources for three

micro-ops per clock cycle:
— If a needed resource (e.g., register) is not available

stall the pipeline
— Allocate Reorder Buffer (ROB) entry which tracks

completion status of micro-ops (up to 126 can be in-
process at any time)

— Allocate one of 128 integer or FP registers entries
for result data value OR a load or store buffer
(pipeline can handle 48 loads and 24 stores)

— Allocate an entry in one of the two micro-op queues
for instruction schedulers

Reorder Buffer (ROB)
• ROB is a circular buffer that handles up 126 micro-ops

and contains the 128 hardware registers
• Each buffer entry contains:

— Status: scheduled, dispatched or completed
— Memory addr: instruction address
— Micro-op
— Alias register: redirects reference of one of 16 visible registers

to one of 128 hardware registers

• Instructions enter ROB in order but are dispatched out-
of-order

• Criteria for dispatch: EU and all necessary data items
are available

• Instructions are retired from the ROB in-order

Register renaming

• Rename stage maps 16 architectural registers
(8 gen purpose + 8 FP) into 128 hardware
registers

• This stage removes output dependencies and
antidependencies and preserves read-after-
write dependencies (true data dependencies)

Micro-op queueing

• Two micro-op queues hold micro-ops until room
in scheduler is available
— One queue for memory ops (loads and stores)
— All other instructions in second queue

• Queues are FIFO but independent – no order is
maintained between queues

Pentium 4 Pipeline Operation (3) Scheduling and Dispatching

• Schedulers dispatch micro-ops for execution
— Look for micro-ops with all operands available

(check status indicators)
— Dispatch to appropriate EU when available
— Up to six micro-ops can be dispatched per cycle
— When more than 6 are available FIFO order is used

• Four ports attach schedulers to EUs
— Port 0: complex integer operations and floating

point
— Port 1: simple integer ops and branch mispredictions
— Ports 2,3: loads and stores

10

Pentium 4 Pipeline Operation (4) Execution Units

• Integer and FP register files, L1 data cache are
the source for execution units

• Separate pipeline stage computes flags

Pentium 4 Pipeline Operation (5) Branch Check

• Branch checking compares actual branch result
to prediction

• Mispredicted branches require pipeline cleanup
• Proper branch dest is provided to branch

predictor during a drive stage
• Restart pipeline from new target address

Pentium 4 Pipeline Operation (6) ARM Cortext A-8

• Recent ARM implementations have introduced
superscalar techniques

• Cortex A-8 is in the ARM family that ARM refers
to as “application processors”
— An embedded processor running a complex

operating system for wireless, consumer and
imaging applications

– Mobile phones
– Set-top boxes
– Gaming consoles
– GPS navigation
– Automobile entertainment systems

11

Cortex A-8

Logical View

Key Points

• Dual in-order issue 13-stage pipeline
— In-order issue was selected to minimize power

consumption
— Out-of-order issue can require huge amounts of

circuitry (and hence power)

• SIMD Unit uses a separate 10-stage pipeline

Instruction Fetch Unit
• Predicts instruction stream
• Fetches instructions from L1 cache and places them in

a buffer for the decode pipeline
• Fetch unit includes the L1 instruction cache
• There may be several unresolved branches in the

pipeline, so fetches are speculative
• Pipeline Stages:

— F0 Address Generation Unit (AGU) generates a new virtual
address (sequential or branch target)

— F1 calculated address used to fetch instructions from L1 cache.
In parallel the fetch address is used to access branch
prediction arrays

— F2 Instructions are placed in queue. If instruction results in
branch prediction, new target address is sent to AGU

Instruction Fetch Pipeline

• Up to 12 instructions can be fetched and queued

• Instructions are issued to decode buffer two at a time

• Queue enables prefetch ahead of the integer pipeline

BHB and GHB
• Processor implements a 2-level global branch predictor:

Branch Target Buffer (BTB) with Global History Buffer
(GHB)
— Accessed in parallel with instruction fetches
— 512 entry BTB indicates if current fetch address contains a

branch and stores its branch address
— With BTB hit the branch is predicted and the GHB is accessed

– Contains 4096 2 bit counters that encode direction of branch
– Indexed by 10-bit history of the direction of the last 10 branches

encountered and 4 bits of the PC

— In addition to dynamic branch predictor a return stack predicts
subroutine return addresses

– Return stack has 8 32-bit entries that store link register and
ARM/Thumb state of caller

– When a return is predicted taken the return stack provides the last
pushed address and state

Instruction Decode Unit

• Has a dual pipeline (pipe0 and pipe1) that
processes two instructions at a time
— Pipe0 always contains the older instruction in program

order so pipe0 must always issue before pipe1
— Issued instructions proceed in-order through execution

pipeline
— In-order issue means no WAR hazards; WAW is easy to

handle so main concern is prevention of RAW hazards

12

Decode Unit Decode Stages D0 and D1

• D0 Thumb instructions are decompressed into 32-
bit ARM instructions; then preliminary decode

• D1 completes decoding
— In first two stages the instruction type, source and

dest operands, resource requirements are determined
— A few complex instructions are broken into smaller

instructions that are sequenced through execution

Decode Stage D2

• D2 writes instructions into /reads from the
pending/replay queue
— Replay queue deals with the effect of memory on

instruction timing. Instructions are scheduled into D3
based on prediction of when source operand will be
available

— Any stall from memory results in minimum 8-cycle
delay, can be much longer

— To deal with stalls a recovery mechanism is used to
flush all subsequent instructions in execution queue
and reissue or “replay” them

– instructions are copied into replay queue before issued
– Removed as they write back their results and retire
– With a Replay signal instructions are retrieved from queue

and they re-enter the pipeline

Decode Stages D3-D4

• D3 Instruction scheduling logic. A scoreboard
(see appendix I.4) predicts register availability.
Hazard checking is performed

• F4 Final decode for control signals required by
the integer execute and the load/store units

Memory System Effects on Instruction Timing Integer Execution Unit

• Consists of
— two symmetric ALU pipelines
— Address generator for load and store instructions
— Multiply pipeline
— Execution also performs register write-back

• Operations
— Executes all integer ALU and multiply operations

including flag generation
— Generals virtual addresses for loads and stores and

the base write-back value when required
— Supplies data for stores and forwards data and flags
— Processes branches and returns and evaluates

instruction condition codes

13

Integer Execution Unit Integer Instructions

• Can use pipe0 or pipe1. Stages are
— E0 Access register file; reads up to six registers for

two instructions
— E1 Barrel shifter performs function if needed
— E2 ALU unit performs operation
— E3 if needed saturation unit performs function
— E4 handles changes in control flow, including branch

misprediction, exceptions and memory system
replays

— E5 write back results to register file

• If multiply unit is used, instruction can only
execute in pipe0

Load/Store Pipeline

• Stages are
— E0 Access register file; reads up to six registers for

two instructions
— E1 AGU generates memory address from base and

index registers
— E2 address applied to the cache
— E3 for LOADs data are returned for forwarding to

ALU or MUL unit. For store data are prepared for
writeback to cache

— E4 updates L2 cache if needed
— E5 write back results to register file

Dual Issue Restrictions

Example Sequence with Scheduling-1 Example Sequence with Scheduling-2

14

SIMD and Floating Point Pipeline
• SIMD and floating point operations are decoded in the

integer pipeline, and then processed in a separate 10-
stage pipeline called the NEON unit

• See
http://www.arm.com/products/processors/technologies/neon.php
NEON technology can accelerate multimedia and signal processing algorithms

such as video encode/decode, 2D/3D graphics, gaming, audio and speech
processing, image processing, telephony, and sound synthesis by at least
3x the performance of ARMv5 and at least 2x the performance of ARMv6
SIMD.

NEON technology is cleanly architected and works seamlessly with its own
independent pipeline and register file.

NEON technology is a 128 bit SIMD (Single Instruction, Multiple Data)
architecture extension for the ARM Cortex™-A series processors, designed
to provide flexible and powerful acceleration for consumer multimedia
applications, delivering a significantly enhanced user experience. It has
32 registers, 64-bits wide (dual view as 16 registers, 128-bits wide.

NEON cont’d

• NEON instructions perform "Packed SIMD"
processing:
— Registers are considered as vectors of elements of

the same data type
— Data types can be: signed/unsigned 8-bit, 16-bit,

32-bit, 64-bit, single precision floating point
— Instructions perform the same operation in all lanes

NEON Pipeline

http://www.arm.com/products/processors/technologies/neon.php

