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Chapter 14
Instruction Level Parallelism and Superscalar
Processors

Computer Organization and Architecture What does Superscalar mean?

• Common instructions (arithmetic, load/store, 
conditional branch) can be initiated and executed 
independently in separate pipelines
— Instructions are not necessarily executed in the order 

in which they appear in a program
— Processor attempts to find instructions that can be 

executed independently, even if they are out-of-order
— Use additional registers and register renaming to 

eliminate some dependencies

• Equally applicable to RISC & CISC
• Quickly adopted and now standard approach for 

high-performance microprocessors

Why Superscalar?

• Term was coined in 1987; first such processors 
were roughly a year later

• Most machine operations are on scalar quantities 
(see RISC notes)

• So if we improve these operations we can get a 
significant overall improvement

• Two main ideas:
— Execute instructions concurrently and independently 

in separate pipelines
— Improve throughput of concurrent pipelines by 

allowing out-of-order execution

General Superscalar Organization

Speedup with superscalar architectures

• Results vary considerably depending on 
hardware and applications being simulated

Superpipelining

• An alternative approach to performance 
improvement
— Many pipeline stages need less than half a clock 

cycle
— So we can double the internal clock speed to get 

two tasks per external clock cycle (Example MIPS 
R4000)
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Superscalar vs
Superpipeline Instruction Level Parallelism

• Instruction level parallelism is the degree on 
average by which the instruction of a program 
can be executed in parallel

• Achieved by:
— Compiler based optimization
— Hardware techniques

• Limited by:
— True data dependency
— Procedural dependency
— Resource conflicts
— Output dependency
— Antidependency

True Data Dependency
ADD eax,ecx 
MOV ebx, eax

• We can fetch and decode the second instruction 
in parallel with the first

• But we cannot execute the second instruction 
until the first is finished
— The second instruction has to read the results of the 

first instruction
• Also called “flow dependency” or “read-after-

write” dependency
• A fairly obvious general rule is that any 

instruction has to be delayed until its inputs are 
available

A note on terminology
• Everybody agrees that this instruction sequence has a 

data hazard, and that it is a “true data dependency”
ADD eax, ecx 
MOV ebx, eax

• Unfortunately, in the literature some people describe 
this as “read after write” (RAW) while others describe 
it as “write after read” (WAR)
— The RAW description describes the instruction sequence as it 

appears in the instruction stream and as it should be correctly 
executed by the processor. The Read MUST take place after 
the Write

— The WAR description describes the hazard, i.e., it describes 
the incorrect execution sequence where the Write actually 
occurs after the read, so the result is not correct 

• The textbook uses RAW in Ch. 12 and WAR in Ch. 14. 
• We will use the RAW approach (describe the instruction 

stream as it should be executed)

True Data Dependency
ADD r1,r2 ;(r1 <- r1+r2;)
MOV r3,r1 ;(r3 <- r1;)

• Note that these instructions may not cause a 
delay in a simple pipeline

• But consider this sequence
MOV ebx, memvar
MOV eax, ebx

• Typical RISC processor requires 2 or more 
cycles to read from memory

• Can be hundredsof cycles if cache miss
• Pipeline is stalled until load completes

Procedural Dependency

• We cannot execute instructions after a branch 
in parallel with instructions before a branch

• Also, if the instruction length is not fixed, 
instructions have to be decoded to find out 
how many fetches are needed

• This prevents simultaneous fetches
— This suggests that superscalar techniques are more 

easily applied to RISC machines 
— CISC resolution is to divide the fetch/decode stages 

into very small stages and use a prefetch queue
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Resource Conflict

• Two or more instructions requiring access to 
the same resource at the same time
— Memory
— Cache
— Register-file ports
— Functional units (adder, shifter)

• A resource conflict has a similar effect to true 
data dependency

• But we can duplicate resources to reduce some 
contention whereas we can never eliminate a 
data dependency

• Slow operations can be divided into smaller 
pipeline stages to minimize delays

Effect of 
Dependencies

Design Issues

• Instruction level parallelism
— Occurs when instructions in a sequence are 

independent and execution can be overlapped
— Governed by data and procedural dependency
Parallel execution Sequential Execution
load r1,r2 add r3,r3,1
add r3,r3,1 add r4,r3,r2
add r4,r4,r2 store [r4], r0

• Machine Parallelism
— A measure of the ability to take advantage of 

instruction level parallelism
— Governed by number of parallel pipelines and speed 

and sophistication of measures taken to find 
independent instructions

Factors

• Instruction Level Parallelism
— Instruction set architecture
— Application program
— Operation latency

• Machine Parallelism
— Number of parallel pipelines
— Ability to find independent instructions

Instruction Issue

• Instruction issue is the process of initiating 
instruction execution 
— Occurs when decoded instruction moved to first 

execute phase
• Instruction issue policy is the protocol used to 

issue instructions
• Processor looks ahead to locate instructions 

that can be executed
• 3 types of orderings are important:

— Order in which instructions are fetched
— Order in which instructions are executed
— Order in which instructions change registers and 

memory

Instruction Issue Policy

• To optimize pipeline execution processor will 
need to alter one or more orderings

• But the result of the computation must be 
correct

• Three general policy categories
— In-order issue with in-order completion
— In-order issue with out-of-order completion
— Out-of-order issue with out-of-order completion
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Example Machine

• Examples assume the following:
— CPU has three functional units: two integer ALUs and 

one floating point ALU
— The CPU can fetch and decode two instructions at a 

time
— There are two instances of the write-back pipeline 

stage

In-Order Issue 
In-Order Completion

• Issue instructions in the order they occur
— Not very efficient
— Instructions must stall if necessary (conflict for 

functional unit or dependency)

Assumptions and Constraints

I1 executes in 2 cycles I3,I4 conflict for func. unit

I5 depends on I4 result I5,I6 conflict for func.unit

In-Order Issue Out-of-Order Completion

• With out-of-order completion any number of 
instructions can be in the pipeline – to the limit 
of machine parallelism

• Here I2 runs to completion before I1
• As a result I3 completes earlier 

Output (write-after-write) dependency

• Consider
R3 <- R3 + R5 (I1)
R4 <- R3 + 1 (I2)
R3 <- R5 + 1 (I3)
R7 <- R3 + R4 (I4) 

— I2 depends on result of I1 - data dependency
— I4 depends on result of I3 – data dependency
— What about I3 and I1?
— If I3 completes before I1, the result from I1 will be 

wrong for I4

• The problem here that both I1 and I3 write to 
R3. In general writes must be completed in-
order

Other complications

• With out-of-order completion processor 
interrupt and exception handling is more 
complex

• Instructions ahead of the current instruction 
may have already completed

• Note however that WAW dependencies can 
sometimes be resolved by simply using a 
different register

Out-of-Order Issue
Out-of-Order Completion

• With in-order issue the processor stops 
decoding instructions when a dependency or 
conflict is detected
— Cannot look ahead of the point of conflict to find 

other instructions to execute
• To allow out-of-order issue decouple the 

decode pipeline from execution pipeline
— Can continue to fetch, decode and place 

instructions in a buffer (the instruction window) 
until this pipeline is full

— When a functional unit becomes available an 
instruction can be executed

— Since instructions have been decoded, processor can 
look ahead



5

Instruction Window

• Buffer that holds decoded instructions is called 
the instruction window

• When a functional unit becomes available an 
instruction is issued to the execute unit

• Any instruction can be issued provided
— It can execute in the available functional unit
— No conflicts or dependencies block the instruction

Out-of-Order Issue Out-of-Order Completion 
(Diagram)

Assumptions and Constraints

I1 executes in 2 cycles I3,I4 conflict for func. unit

I5 depends on I4 result I5,I6 conflict for func.unit

Note that because I5 depends on I4, but I6 does not we can 
issue I6 before I5

Antidependency (write-after-read dependency)
• Same example as write-after-write:

R3 <- R3 + R5  (I1)
R4 <- R3 + 1    (I2)
R3 <- R5 + 1    (I3)
R7 <- R3 + R4  (I4)
— I3 can not complete before I2 starts as I2 needs a value in R3 

and I3 changes R3
— “Antidependency” used because constraint is similar to true 

data dependency but reversed: I3 destroys a value that I2 uses
— To find antidependencies look for register overwriting 

instructions and examine prior instructions
— Note that we also have 

– an output dependency with respect to I1 and I3
– True data dependencies with in I2/I1 and I4/I3

Register contention 

• True data dependencies and resource conflicts 
are attributable to the flow of data through a 
program and the sequence of execution

• Output dependencies and antidependencies are 
attributable to contention for registers and arise 
because the values in registers may not reflect 
the sequence of values dictated by program flow

• Compiler register optimization can increase 
contention by maximizing registers usage

Register Renaming

• One easy way to resolve resource contention is 
to increase or duplicate resources

• Allocate registers dynamically
— i.e. actual registers are not specifically named
— New register values are created when an instruction 

references a register as a dest operand
— Subsequent instructions that access that value as a 

source operand are revised to refer to the register 
actually containing the value

Register Renaming example
R3b <- R3a + R5a    (I1)
R4b <- R3b + 1        (I2)
R3c <- R5a + 1        (I3)
R7b <- R3c + R4b    (I4)

• Register reference without subscript refers to a 
logical register in the instruction

• With subscript it is a hardware register actually 
allocated

• Note R3a R3b R3c
• I3 can be issued immediately when EU is 

available
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Machine Level Parallelism

• Three techniques for enhancing superscalar
performance:
— Duplication of Resources
— Out of order issue
— Register Renaming

• It is probably not worth duplicating functional 
units without register renaming

• In order to effectively utilize duplicated 
resources we need an instruction window that 
is large enough for effective lookahead (more 
than 8)

Speedups of Machine Organizations Without 
Procedural Dependencies

Branch Prediction

• The 80486 fetches both next sequential 
instruction after branch and branch target 
instruction

• Because there are two pipeline stages between 
fetch and execute we still have a two cycle 
delay when the branch is taken

RISC - Delayed Branch

• Calculate result of branch before unusable 
instructions are pre-fetched

• Always execute a single instruction 
immediately following branch

• Keeps pipeline full while fetching new 
instruction stream

• Not as good for superscalar processors
— Multiple instructions need to execute in delay slot
— Instruction dependence problems

• So we revert to branch prediction

Superscalar Execution Instruction commit

• Some instructions may have been executed out 
of order 

• Others may need to be discarded 
• Do not update program-visible registers and 

permanent storage immediately
• Retain in temp storage until the sequential 

model would have executed them 
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Superscalar Implementation Summary

• Simultaneously fetch multiple instructions
• Logic to determine true dependencies involving 

register values
• Mechanisms to communicate these values
• Mechanisms to initiate multiple instructions in 

parallel
• Resources for parallel execution of multiple 

instructions
• Mechanisms for committing process state in 

correct order

Pentium 4

• The 80486 was a straightforward CISC machine
• Pentium added some superscalar components

— Two separate integer execution units

• Pentium Pro was a full blown superscalar
implementation

• Subsequent models refined & enhanced the 
superscalar design

Pentium 4 Block Diagram Pentium 4 Operation

1. Processor fetches instructions from memory in 
static program order.

2. Each instruction is translated into one or more 
fixed length RISC instructions (micro-operations)

3. Execute micro-ops on superscalar pipeline
— micro-ops may be executed out of order

4. Processor commits results of micro-ops to 
register set in original program flow order

• Outer CISC shell with inner RISC core
• Inner RISC core pipeline at least 20 stages

— Some micro-ops require multiple execution stages
– Longer pipeline (up to 20 stages)

— c.f. five stage pipeline on x86 up to Pentium

Pentium 4 Pipeline Pentium 4 Front end
• The in-order front end is part of the machine that is 

outside the true pipeline
• It feeds into L1 instruction cache called trace cache 

(start of pipeline) 
— Processor operates from trace cache; cache miss causes L2 

cache lookup and front end feed to trace cache
— Fetch-decode unit uses branch target buffer (BTB) and 

instruction TLB to determine cache line in L2 cache 
— The I-TLB translates linear addresses into physical addresses 

that are presented to L2

• 64 bytes are fetched at a time; default sequential but 
can be altered via branch prediction and the BTB
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Generation of micro-ops

• The Fetch/decode unit scans instructions to 
determine instruction boundaries – some are as 
long as 18 bytes

• Each Pentium instruction is translated to 1-4 
micro-ops (118 bit fixed length)
— C.f. RISC 32-bit instruction

• Generated micro-ops are stored in trace cache

Trace Cache next instruction pointer
• First two pipeline stages deal with selection of 

instructions from trace cache
• This is a separate branch prediction mechanism from 

fetch/decode unit 
• BTB used as described in Ch 13
• BTB is 4-way set associative cache with 512 lines

— Address of branch is tag
— BTB includes last dest address and 4-bits of history

• BTB is a two-stage branch prediction mechanism with 4 
bits of history data because pipeline penalties are 
large

• Static prediction for new branches
— Not IP-relative (RET) predict taken
— IP-relative backward branches: predict taken
— IP-relative forward branches: predict not taken

Pentium 4 Pipeline Operation (1) Trace Cache Fetch

• Trace caches takes micro-ops and assembles 
them into program-ordered sequences called 
traces

• Micro-ops are fetched sequentially subject to 
branch prediction logic

• A few instruction require more than 4 micro-
ops
— These are transferred to microcode ROM for 

sequencing
— Microcode ROM is a programmed control unit that 

contains 5+ micro-op sequences for complex 
machine instructions

Drive

• The fifth stage delivers decoded sequences 
from trace cache / microcode ROM to the 
register renaming and  allocation module

Pentium 4 Pipeline Operation (2)
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Out of order execution logic

• Reorders micro-ops for fast execution
• Allocate stage allocates resources for three 

micro-ops per clock cycle:
— If a needed resource (e.g., register) is not available 

stall the pipeline
— Allocate Reorder Buffer (ROB) entry which tracks 

completion status of micro-ops (up to 126 can be in-
process at any time) 

— Allocate one of 128 integer or FP registers entries 
for result data value OR a load or store buffer 
(pipeline can handle 48 loads and 24 stores)

— Allocate an entry in one of the two micro-op queues 
for instruction schedulers

Reorder Buffer (ROB)
• ROB is a circular buffer that handles up 126 micro-ops 

and contains the 128 hardware registers
• Each buffer entry contains:

— Status: scheduled, dispatched or completed
— Memory addr: instruction address
— Micro-op
— Alias register: redirects reference of one of 16 visible registers 

to one of 128 hardware registers

• Instructions enter ROB in order but are dispatched out-
of-order 

• Criteria for dispatch: EU and all necessary data items 
are available 

• Instructions are retired from the ROB in-order

Register renaming

• Rename stage maps 16 architectural registers 
(8 gen purpose + 8 FP) into 128 hardware 
registers

• This stage removes output dependencies and 
antidependencies and preserves read-after-
write dependencies (true data dependencies)

Micro-op queueing

• Two micro-op queues hold micro-ops until room 
in scheduler is available
— One queue for memory ops (loads and stores)
— All other instructions in second queue

• Queues are FIFO but independent – no order is 
maintained between queues

Pentium 4 Pipeline Operation (3) Scheduling and Dispatching

• Schedulers dispatch micro-ops for execution
— Look for micro-ops with all operands available 

(check status indicators)
— Dispatch to appropriate EU when available
— Up to six micro-ops can be dispatched per cycle
— When more than 6 are available FIFO order is used 

• Four ports attach schedulers to EUs
— Port 0: complex integer operations and floating 

point 
— Port 1: simple integer ops and branch mispredictions
— Ports 2,3: loads and stores
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Pentium 4 Pipeline Operation (4) Execution Units

• Integer and FP register files, L1 data cache are 
the source for execution units

• Separate pipeline stage computes flags 

Pentium 4 Pipeline Operation (5) Branch Check

• Branch checking compares actual branch result 
to prediction

• Mispredicted branches require pipeline cleanup 
• Proper branch dest is provided to branch 

predictor during a drive stage
• Restart pipeline from new target address

Pentium 4 Pipeline Operation (6) ARM Cortext A-8

• Recent ARM implementations have introduced 
superscalar techniques

• Cortex A-8 is in the ARM family that ARM refers 
to as “application processors”
— An embedded processor running a complex 

operating system for wireless, consumer and 
imaging applications

– Mobile phones
– Set-top boxes
– Gaming consoles
– GPS navigation
– Automobile entertainment systems
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Cortex A-8

Logical View

Key Points

• Dual in-order issue 13-stage pipeline
— In-order issue was selected to minimize power 

consumption
— Out-of-order issue can require huge amounts of 

circuitry (and hence power)

• SIMD Unit uses a separate 10-stage pipeline

Instruction Fetch Unit
• Predicts instruction stream
• Fetches instructions from L1 cache and places them in 

a buffer for the decode pipeline
• Fetch unit includes the L1 instruction cache
• There may be several unresolved branches in the 

pipeline, so fetches are speculative
• Pipeline Stages:

— F0 Address Generation Unit (AGU) generates a new virtual 
address (sequential or branch target)

— F1 calculated address used to fetch instructions from L1 cache. 
In parallel the fetch address is used to access branch 
prediction arrays 

— F2 Instructions are placed in queue. If instruction results in 
branch prediction, new target address is sent to AGU

Instruction Fetch Pipeline

• Up to 12 instructions can be fetched and queued

• Instructions are issued to decode buffer two at a time

• Queue enables prefetch ahead of the integer pipeline

BHB and GHB
• Processor implements a 2-level global branch predictor: 

Branch Target Buffer (BTB) with Global History Buffer 
(GHB)
— Accessed in parallel with instruction fetches 
— 512 entry BTB indicates if current fetch address contains a 

branch and stores its branch address
— With BTB hit the branch is predicted and the GHB is accessed 

– Contains 4096 2 bit counters that encode direction of branch
– Indexed by 10-bit history of the direction of the last 10 branches 

encountered and 4 bits of the PC

— In addition to dynamic branch predictor a return stack predicts 
subroutine return addresses

– Return stack has 8 32-bit entries that store link register and 
ARM/Thumb state of caller

– When a return is predicted taken the return stack provides the last 
pushed address and state

Instruction Decode Unit

• Has a dual pipeline (pipe0 and pipe1) that 
processes two instructions at a time
— Pipe0 always contains the older instruction in program 

order so pipe0 must always issue before pipe1
— Issued instructions proceed  in-order through execution 

pipeline
— In-order issue means no WAR hazards; WAW is easy to 

handle so main concern is prevention of RAW hazards
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Decode Unit Decode Stages D0 and D1

• D0 Thumb instructions are decompressed into 32-
bit ARM instructions; then preliminary decode

• D1 completes decoding
— In first two stages the instruction type, source and 

dest operands, resource requirements are determined
— A few complex instructions are broken into smaller 

instructions that are sequenced through execution

Decode Stage D2

• D2 writes instructions into /reads from the 
pending/replay queue
— Replay queue deals with the effect of memory on 

instruction timing. Instructions are scheduled into D3 
based on prediction of when source operand will be 
available

— Any stall from memory results in minimum 8-cycle 
delay, can be much longer

— To deal with stalls a recovery mechanism is used to 
flush all subsequent instructions in execution queue 
and reissue or “replay” them

– instructions are copied into replay queue before issued
– Removed as they write back their results and retire
– With a Replay signal instructions are retrieved from queue 

and they re-enter the pipeline

Decode Stages D3-D4

• D3 Instruction scheduling logic. A scoreboard 
(see appendix I.4) predicts register availability. 
Hazard checking is performed

• F4 Final decode for control signals required by 
the integer execute and the load/store units

Memory System Effects on Instruction Timing Integer Execution Unit

• Consists of 
— two symmetric ALU pipelines
— Address generator for load and store instructions
— Multiply pipeline
— Execution also performs register write-back

• Operations
— Executes all integer ALU and multiply operations 

including flag generation
— Generals virtual addresses for loads and stores and 

the base write-back value when required
— Supplies data for stores and forwards data and flags
— Processes branches and returns and evaluates 

instruction condition codes
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Integer Execution Unit Integer Instructions

• Can use pipe0 or pipe1. Stages are
— E0 Access register file; reads up to six registers for 

two instructions
— E1 Barrel shifter performs function if needed
— E2 ALU unit performs operation
— E3 if needed saturation unit performs function
— E4 handles changes in control flow, including branch 

misprediction, exceptions and memory system 
replays

— E5 write back results to register file

• If multiply unit is used, instruction can only 
execute in pipe0

Load/Store Pipeline

• Stages are
— E0 Access register file; reads up to six registers for 

two instructions
— E1 AGU generates memory address from base and 

index registers
— E2 address applied to the cache
— E3 for LOADs data are returned for forwarding to 

ALU or MUL unit. For store data are prepared for 
writeback to cache

— E4 updates L2 cache if needed
— E5 write back results to register file

Dual Issue Restrictions

Example Sequence with Scheduling-1 Example Sequence with Scheduling-2
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SIMD and Floating Point Pipeline
• SIMD and floating point operations are decoded in the 

integer pipeline, and then processed in a separate 10-
stage pipeline called the NEON unit

• See
http://www.arm.com/products/processors/technologies/neon.php
NEON technology can accelerate multimedia and signal processing algorithms 

such as video encode/decode, 2D/3D graphics, gaming, audio and speech 
processing, image processing, telephony, and sound synthesis by at least 
3x the performance of ARMv5 and at least 2x the performance of ARMv6 
SIMD.

NEON technology is cleanly architected and works seamlessly with its own 
independent pipeline and register file.

NEON technology is a 128 bit SIMD (Single Instruction, Multiple Data) 
architecture extension for the ARM Cortex™-A series processors, designed 
to provide flexible and powerful acceleration for consumer multimedia 
applications, delivering a significantly enhanced user experience.  It has 
32 registers, 64-bits wide (dual view as 16 registers, 128-bits wide.

NEON cont’d

• NEON instructions perform "Packed SIMD" 
processing:
— Registers are considered as vectors of elements of 

the same data type
— Data types can be: signed/unsigned 8-bit, 16-bit, 

32-bit, 64-bit, single precision floating point
— Instructions perform the same operation in all lanes

NEON Pipeline

http://www.arm.com/products/processors/technologies/neon.php

