Computer Organization and Architecture

[B = 17T Pl T I
Chapter 4
Cache Memory

Note: Appendix 4A will not be covered in class, but
the material is interesting reading and may be used in
some homework problems.

Characteristics of Memor S¥stems
5 ==
Location Performance
Processor Access time
Internal (main) Cycle time
External (secondary) Transfer rate
Capacity Physical Type
‘Word size Semiconductor
Number of words Magnetic
Unit of Transfer Optical
‘Word Magneto-Optical
Block Physical Characteristics
Access Method Volatile/nonvolatile
Sequential Erasable/nonerasable
Direct Organization
Random
Associative

Location
S
= CPU
— Registers and control unit memory
« Internal
— Main memory and cache

* External

— Storage devices (paper tape, cards, tapes, discs,
flash cards, etc.)

Caeaqity .
= Word size
— The natural unit of organisation
— Typically number of bits used to represent an
integer in the processor
= Number of words
— Most memory sizes are now expressed in bytes
— Most modern processors have byte-addressable
memory but some have word addressable memory
— Memory capacity for A address lines is 24
addressable units

Unit of Transfi
|~ B

17T TR
« Internal
— Usually governed by data bus width
= External

— Usually a block which is much larger than a word
(typical disk 512 - 4096 bytes)
= Addressable unit
— Smallest location which can be uniquely addressed

— Some systems have only word addressable memory
while many have byte addressable memory

— A block or even cluster of blocks on most disks

Access Methods (1
|~ B

17T | Pl W
« Sequential
— Start at the beginning and read through in order

— Access time depends on location of data and
previous location

—e.g. tape
= Direct
— Individual blocks have unique address
— Access is by jumping to vicinity plus sequential
search

— Access time depends on location and previous
location

—e.g. disk

Access Methods (2

= Random
— Individual addresses identify locations exactly

— Access time is independent of location or previous
access

—e.g. RAM
* Associative

— Data is located by a comparison with contents of a
portion of the store

— Access time is independent of location or previous
access

— All memory is checked simultaneously; access time
is constant

—e.g. cache

Performalnce

« From user’s perspective the most important
characteristics of memory are capacity and
performance

* Three performance parameters:

— Access time
—Cycle Time
— Transfer Rate

* Access time (latency)

— For RAM access time is the time between presenting an
address to memory and getting the data on the bus

— For other memories the largest component is
positioning the read/write mechanism

Performalnce

* Cycle Time
— Primarily applied to RAM; access time + additional
time before a second access can start

— Function of memory components and system bus, not
the processor

= Transfer Rate - the rate at which data can be
transferred into or out of a memory unit
—For RAM TR =1/ (cycle time)

memories

Transfer ll’ate

e T, =T, + n/r) where

T,=Average time to read or write N bits
T, =Average access time

n = number of bits

r = transfer rate in bits / second

Physical '{' pes of
= Semiconductor
—RAM (volatile or non-volatile)
= Magnetic Surface Memory
— Disk & Tape
* Optical
—CD & DVD
= Others
— Magneto-optical
— Bubble
— Hologram

Phxsical (ltr
= Volatility

— Does the memory retain data in the absence of
electrical power?

= Decay

—Ranges from tiny fractions of a second (volatile
DRAM) to many years (CDs, DVDs)

* Erasable

— Can the memory be rewritten? If so, how fast? How
many erase cycles can occur?

= Power consumption

Oor anlzatlon
&d S = 17T Pl T DI
= Physical arrangement of blts into words

= Not always obvious, e.g., interleaved memory
(examples later)

Memog Hierarch
* For any memory:
—How fast?
—How much?
—How expensive?
= Faster memory => greater cost per bit
= Greater capacity => smaller cost / bit
= Greater capacity => slower access
= Going down the hierarchy:
— Decreasing cost / bit
— Increasing capacity
— Increasing access time
— Decreasing frequency of access by processor

Memog Hierarch

Memog H|erarch

Reglsters
—In CPU
= Internal or Main memory
—May include one or more levels of cache
— “RAM”
= External memory
— Backing store

Hierarchy Li
[l

- Registers
L1 Cache

L2 Cache

Main memory

Disk cache

Magnetic Disk

Optical

Tape

(and we could mention punch cards, etc at the
very bottom)

ety o Bt
= = = 1) I [T
* Two or more levels of memory can be used to

produce average access time approaching the
highest level
= The reason that this works well is called
“locality of reference”
= In practice memory references (both instructions
and data) tend to cluster
— Instructions: iterative loops and repetitive subroutine
calls
—Data: tables, arrays, etc. Memory references cluster
in short run

Cache

[e== R =]
« A small amount of fast memory that sits

between normal main memory and CPU

* May be located on CPU chip or module

= Intended to allow access speed approaching
register speed

= When processor attempts to read a word from
memory, cache is checked first

| = B = ===}l ™ SR
= If data sought is not present in cache, a block
of memory of fixed size is read into the cache
= Locality of reference makes it likely that other
words in the same block will be accessed soon

=== NI R]
Block Transfer
Word Transfer ~A
| CPU Cache I Main Memory
Fast Slow
(a) Single cache
cPU Level1 [—> Level2 [f—>| Level3 [—> Main
(L1) cache |4e—{ (12) cache [l (13) cache |le—| Memory
Fastest Fast Less Stow
fast

B\ Theeedavel cachy

A Simple two-level cache
[=

E —==BIam =S i
« Level 1: 1000 words, 0.01us
« Level 2: 100,000 words 0.1ps

= If word in L1 processor has direct access else
word copied from L2 into L1

= Av Access Time as function of hit ratio H:
H*0.01ps + (1-H)* 0.11ps
= With H near 1 access time approaches 0.01us

Two-levell
|

T,+T,

|

Average access time

o
T

0 1
Fraction of accesses involving only Level 1 (Hit ratio)

Two-level disk
|

i =Nl =]
= Principles of two-level memories can be

applied to disk as well as RAM
= A portion of main memory can be used as a disk
cache
— Allows disk writes to be clustered; largest
component of disk access time is seek time

— Dirty (modified) datamay be requested by the
program before it is even written back to disk

Cache/Main Memory Structure
|~ B =1

Line Memory
Number Tag Block address
0 0
1 1
2 2 Block
3 (K words)
c-1
Block Length
(K Words) >
(a) Cache
Block
2"-1
« Word

Length

Cache vielw of memor
|~ T

b) Main memory

: 17T Pl T I
= N address lines => 2" words of memory

= Cache stores fixed length blocks of K words

« Cache views memory as an array of M blocks
where M = 2n/K

A block of memory in cache is referred to as a
line. K is the line size

Cache size of C blocks where C <M
(considerably)

Each line includes a tag that identifies the
block being stored

= Tag is usually upper portion of memory address

Cache operati
[= 11T i [
= CPU requests contents of memory location
= Check cache for this data
= If present, get from cache (fast)

= If not present, read required block from main
memory to cache

« Then deliver from cache to CPU

= Cache includes tags to identify which block of
main memory is in each cache slot

chhart

Receive address
RA from CPU

Is block
containing RA
in cache?

Access main
memory for block
containing RA

Allocate cache
line for main
memory block

Fetch RA word
and deliver
to CPU

Load main
memory block
into cache line

Deliver RA word
to CPU

Txﬁicgl Cla he O

Address
B_’

Address
buffer

Processor Control Cache Control

System Bus

Data
buffer

> }._,
Data <

Cache or(l;a i
|~ T

* The preceding diagram illustrates a shared
connection between the processor, the cache
and the system bus (look-aside cache)

= Another way to organize this system is to
interpose the cache between the processor and
the system bus for all lines (look-through
cache)

- Size

* Mapping Function (direct, assoociative, set associative)
« Replacement Algorithm (LRU, LFU, FIFO, random)

« Write Policy (write through, write back, write once)

* Line Size

* Number of Caches (how many levels, unified or split)

Note that cache design for High Performance Computing (HPC) is very
different from cache design for other computers
Some HPC applications perform poorly with typical cache designs

Cache Size does matter
| =~ S

= Cost
— More cache is expensive
— Would like cost/bit to approach cost of main
memory
* Speed
— But we want speed to approach cache speed for all
memory access
— More cache is faster (up to a point)
— Checking cache for data takes time
— Larger caches are slower to operate

Processor Trpe L1 Cache® Lzcache | L3Cache
TBM 36085 | Mainframe 1968 16103258 = =
PDP-11/70 1975 kB = =
VAX 117780 1978 165 = =
IBM3033 | Mainframe 1978 4B = =
IBM 3090 | Mainframe 1985 1281025658 = =
Tntel 80486 ’c 1989 SKB = =
Pentium PC 1993 SEBSKB | 25610512KB =
PowerC 601 PC 1993 3258 = =
PowerPC 620 PC 1996 2 kBRI = =
PowerPC G4 | PClserver 1995 32kBAIKB | 256KBWo IMB | 2MB
TBM /390 G4 | Maintrame 1997 321 256 KB 2MB
IBM /390 G6 | Mainframe 1999 25658 sMB =
Pentivm 4| PClserver 2000 SKB/S KB 256 KB =
High-cnd
BMSP server! 2000 64 KB/32 KB sMB =
CRAY MTA® 2000 SiB 2MB =
Tranivm PClserver 2001 16KB/16 KB 9 KB MB
ssig;:gm Hﬁ:‘:" 2001 32 kB2 KB 4MB =
Tranium 2 PClserver 2002 3258 256KB 5MB
BM High-cnd = :
e e 2003 64KB 19MB 36MB
CRAYXD-1 2004 1 £B/64 B MB =
I 2007 64 KB/64 KB 4MB 2MB
IBMz10 | Mainframe 2008 64 KB/128 KB 3MB 2448 MB

: S 11T W 2
= Almost all modern processors support virtual

memory (Ch 8)

= Virtual memory allows a program to treat its
memory space as single contiguous block that
may be considerably larger than main memory

= A memory management unit takes care of the

mapping between virtual and physical
addresses

Logicgl Cla h _
= Alogical (virtual) cache stores virtual
addresses rather than physical addresses

= Processor addresses cache directly without
going through MMU

= Obvious advantage is that addresses do not
have to be translated by the MMU

= A not-so-obvious disadvantage is that all
processes have the same virtual address space -
a block of memory starting at 0
— The same virtual address in two processes usually
refers to different physical addresses

— So either flush cache with every context switch or
add extra bits

Logicgl arl1 Ph

Processor

Main

ey

Data

(@) Logical Cache

Logical add MU | Physical addsess

Processor Main

(b) Physical Cache

Look-aside and Look-through
|~ = |1 I 1T

* Look- aS|de cache is parallel with main memory
* Cache and main memory both see the bus cycle

— Cache hit: processor loaded from cache, bus cycle
terminates

— Cache miss: processor AND cache loaded from
memory in parallel
* Pro: less expensive, better response to cache
miss
= Con: Processor cannot access cache while
another bus master accesses memory

Look-through cache
|~ EE

: ==JTaNl—
= Cache checked first when processor requests
data from memory

—Hit: data loaded from cache

— Miss: cache loaded from memory, then processor
loaded from cache

* Pro:

— Processor can run on cache while another bus
master uses the bus

* Con:
— More expensive than look-aside, cache misses slower

Ma| Eglng Functi)
* There are fewer cache Ilnes than memory
blocks so we need
— An algorithm for mapping memory into cache lines
— A means to determine which memory block is in
which cache line
* Example elements:
— Cache of 64kByte
— Cache block of 4 bytes
- i.e. cache is 16k (21%) lines of 4 bytes
— 16MBytes main memory
— 24 bit address (224=16M)

(note: Pentium cache line = 32 bytes until Pentium 4 (128 bytes))

Direct Ma
| — .

1T T el | T
« Each block of main memory maps to only one cache
line

— i.e. if ablock is in cache, it must be in one specific place
e Mapping functionis i = j modulo m
(i = jJ % m)where
i = cache line number
j =main memory block number
m = number of cache lines

e Address is in two parts
« Least Significant w bits identify unique word
* Most Significant s bits specify one memory block

* The MSBs are split into a cache line field r and a tag of
s-r bits (most significant)

Suctu re

Line or Slot r Word w

8 14 2

24 bit address, 2 bit word identifier (4 byte block)
22 bit block identifier (s)
— 8 bit tag (=22-14) and 14 bit slot or line

— Example: AB1402 tag=AB line=0500 word=2
Note: 1402 = 0001 0100 0000 0010

Remove L.s. 2 bits = 0001 0100 0000 00 = 00 0101 0000 0000 = 0500
There are 2° blocks in memory
No two blocks with the same line number can have the same Tag field
— AC1400, 041403, C71401 ...
Check contents of cache by finding line and checking Tag
— Line is 0500 for all of these
— If mem request is AB1402 tag at 0500 must = AB

| =5 1) I [
= Parking lot analogy: think of the cache as a

parking lot, with spaces numbered 0000-9999

With a 9 digit student id, we could assign
parking spaces based on the middle 4 digits:
xxx PPPP yy

Easy to find your parking space
Problem if another student is already there!

Note that with memory addresses, the middle
bits are used as a line number
— Locality of reference suggests that memory

references close in time will have the same high-
order bits

f\l\—/"\ Cache Main Memory
Memory Addiess fse Dua WO

[Tl T [Vo] [Wi b

o

s r w W3

> N
. .]
Conpue ({ ’ * O e

1 Wi

(hit in cache) e

in cache

Example T———
Ty R

Data
T3579226 = ==

Line

» Tag Data Number
771777 13579246 | 0000
11235813 11235813 | 0001

FEDCBA98 0CE7

11223344 | 3FFE
12345678 | 3FFF

12345678

>
8bits 32 bits
16-Kline cache

e

11223344 b= = =
24682468

Note: Memory address values are
in binary representation;

32 bits other values are in hexadecimal

16-MByte main memory

* Address length = (s + w) bits where w =
log,(block size)

Number of addressable units = 25*W words or
bytes

Block size = line size = 2% words or bytes
Number of blocks in main memory

= 25+ W/2W = 25

Size of line field is r bits

— Number of lines in cache =m = 2"

— Size of tag = (s - r) bits

Size of cache 2w bytes or words

Direct M(l:l Cach L'nTabIe
Cache line Main Memory blocks he
0 0, m, 2m, 3m...25-m

e 1 1,m+1, 2m+1...25-m+1

e m-1 m-1, 2m-1,3m-1...25-1

0 000000,010000,...,FFO000
e 1 000004,010004,...,FFO004
e m-1 00FFFC,01FFFC,...,FFFFFC

Direct M
| — .

* Pro
—Simple
— Inexpensive
= Con
— Fixed location for given block
— If a program accesses 2 blocks that map to the same
line repeatedly, cache misses are very high
(thrashing)
= Victim cache
— A solution to direct mapped cache thrashing
—Discarded lines are stored in a small “victim” cache
(4 to 16 lines)
— Victim cache is fully associative and resides
between L1 and next level of memory

4 : =1 T T Tl
= A main memory block can load into any line of
cache

= Memory address is interpreted as 2 fields: tag
and word

= Tag uniquely identifies block of memory
« Every line’s tag is examined simultaneously for a
match

— Cache searching gets expensive because a comparator
must be wired to each tag

— A comparator consists of XNOR gates (true when both
inputs are true)

— Complexity of comparator circuits makes fully
associative cache expensive

Associative Mapping

= Because no bit field in the address specifies a
line number the cache size is not determined
by the address size

= Associative-mapped memory is also called
“content-addressable memory.”

= Items are found not by their address but by
their content

— Used extensively in routers and other network
devices

— Corresponds to associative arrays in Perl and other
languages

* Primary disadvantage is the cost of circuitry

First m blocks of
main memory

(equal to size of cache) b= length of block in bit:
= length of tag in bits

cache memory

() Direct mapping

one block of

cache memory

(b) Associative mapping

Address Structure

Fullx Ass?i ti

i Word
Tag 22 bit 2 bit

« 22 bit tag stored with each 32 bit block of data

« Compare tag field with tag entry in cache to check for
hit

« Least significant 2 bits of address identify which 16 bit
word is required from 32 bit data block

sty

’_\J_’_\ Cache Main Memory
Memory Address Tag Dala WO

Tag | | [T | W1
W2 By
W3
1

e

w,

W_I;%.H
h

° e.g.
— Address Tag Data Cache line
— FFFFFD FFFFFC 24682468 3FFF
Example —

Tag e

] R

Data
T3e70286 f == =1

Line
T Data _ Nuber
TeEERE] TIIZ33ET 0000
t56cs7 | Eaceags | 0001

FEICERSS | =

sererp| 33333333 | arep
000000 13579245 | 3rr2
seeeer] 24582168 | 3rer

—
2bits 2bis

16 Kline Cache

33333333

11223384
24682168 Note: Memary address values are
in binary representation:
Nbie otber values are n headecimal

16 MByte Main Memory

Parking lot analogy: there are more permits than
spaces

Any student can park in any space

Makes full use of parking lot

— With direct mapping many spaces may be unfilled

Note that associative mapping allows flexibility
in choice of replacement blocks when cache is
full

Discussed below

: Summary
* Address length = (s + w)bits where w =
log,(block size)

Number of addressable units = 25*Wwords or
bytes

Block size = line size = 2% words or bytes
Number of blocks in main memory

= 25+ W/2W = 25

Number of lines in cache = undetermined
Size of tag = s bits

e e |1 I T I
= A compromise that provides strengths of both
direct and associative approaches
= Cache is divided into a number of sets of lines
= Each set contains a fixed number of lines
= A given block maps to any line in a given set
determined by that block’s address
—e.g. Block B can be in any line of set i
* e.g. 2 lines per set
— 2-way associative mapping
— A given block can be in one of 2 lines in only one set

Set Associative Mapping
|~ T

17T | Pl W
em=v*k
—Where m = number of lines in cache, v = number of
sets and k = lines/set
—Lines in cache = sets * lines per set
* i =j modulov
—Where | = set number and j = main memory block
number
— Set number = block number % number of sets
= This is referred to as a “k-way” set associative
mapping
= Block B; can be mapped only into lines of set j.

Set Associative Mappin
|~ T

alrkinﬁ Analogx

= If we have 10,000 parking spaces we can divide
them into 1000 sets of 10 spaces each

= Still use middle digits of id to find your parking
place set: xxx PPP yyy

= You have a choice of any place in your set

= Our parking lots actually work like this, but the
sets are fairly large: Fac/Staff; Commuter;
Resident; Visitor

q E

: allmﬁle
- Assume 13 bit set number

= Block number in main memory is modulo 213
(0010 0000 0000 0000 = 2000h

= 000000, 002000, 004000, ... map to same set

atle Orﬁanization

Cache Main Memory

Tog Dun
 E
- [o]

tmiss in cache)

10

Set Associative Ma
| SN

ng Address Structure
= |1 I [W

. Word
Tag 9 bit ‘ Set 13 hit 2 it

e Cache control logic sees address as three fields: tag,
set and word

« Use set field to determine cache set to look in
* Compare tag field to see if we have a hit

- eg
— Address Tag Data Set number
— 1FF 7FFC 1FF 12345678 1FFF
— 001 7FFC 001 11223344 1FFF

* Tags are much smaller than fully associative memories
and comparators for simultaneous lookup are much less
expensive

Example

TR e O Main Memory Address =
(hex)

000
000

Tag Set Word

9 bits 13 bits 2bits

000
000

Set

Data Numper Tz Data '
T357524¢ | 0000 [2C[77777777 -
11235813 | 0001

o2c
02¢

FEDCEA9E | 0CE7

r=oirr| 11223384 | 17re
rioolazassere b == - - = « = dozc] 12335678 | 17er Lizel 24682468 |-

o02c GOGIBITOON.

' '

1 obis 32bits 9bits 32bits :

1FF ITIRITITIOOR00G0505000e | ' 16 Kine Cache '
ire ' '
' '

]) ' '

' '

' '

' '

1re 11223348 b= = === H H
1Fe 24662468 F =@ S mm e e em e

32bits
S Note: Memory address values are
16 MByte Main Memory inbinary representation:

other values are in hexadecimal

Summar

« For a k-way set associative cache with v sets (each set
contains k lines):
— Address length = (t+d+w) bits where w = log,(block size) and d
= log,(v)
— Number of addressable units = 2t words or bytes
— Size of tag = t bits
— Block size = line size = 2% words or bytes
— Number of blocks in main memory = 2t+d
— Number of lines in set = k
— Number of sets = v = 24
— Number of lines in cache = kv = k * 24

) d
Tag (t bits) Set (d bits) twhity

S 11T i [I
* Where v (# sets) = m (# lines in cache) and k =
1 (one line/set) then set associative mapping

reduces to direct mapping

* For v=1 (one set) and k=m (# sets = # lines) it
reduces to pure associative mapping

* 2 lines/set; v=m/2, k=2 is quite common.

= Significant improvement in hit ratio over direct
mapping

* Four-way mapping v=m/4, k=4 provides further
modest improvement

Im

ﬁlementation

= A set associative cache can be implemented as
k direct mapped caches OR as v associative
caches

= With k direct mapped caches each direct
mapped cache is referred to as a way

* The direct mapped implementation is used for
small degrees of associativity (small k) and the
associative mapped implementation for higher
degrees.

Direct mapp
[B

one
set

Vlines

B,

-1
irst v blocks of ‘cache memory - way L eache memory - way k

(equal to number of sets)

(b) k direct-mapped caches

11

cache memory - set 0

By

First v blocks of
‘main memory
(equal to number of sts)

cache memory - set -1

(a) v associative-mapped caches

T T T T T T T T T T |
1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M
Cache size (bytes)
direct
2way
4way
8-way
16-way

10000

Cache replacement
[Y

* When a line is read from memory it replaces
some other line already in cache

= Other than direct mapping, there are choices
for replacement algorithm

= Any given choice can result in a great speedup
for one program and slow-down for some other
program

« There is no “best choice” that works for all
programs

Direct mapping
[B

Replacement Algorithms (1)

= No choice
= Each block only maps to one line
« Replace that line

Replacement Algorithms (2)
Associative & Set Associative
R .

= Algorithm is hardware implemented for speed

« Least Recently used (LRU) assumes locality of
reference so most recently used is likely to be
used again

* LRU is easy for 2-way set associative cache
—Each line has a USE bit

—When a line is referenced, set USE bit to 1 and set
the USE bit for the other line to 0

— Replace the block whose USE bit is 0

= Implemented in fully-associative caches by
keeping list of lines
— Most recently referenced lines goes to head of list

MRU replacement
[R

= = 17 T I [
= Most Recently Used (MRU) would seem to be an
improbable algorithm

= It is useful for some specialized caches where

the type of code executing is known (example:
database index scan)

12

Other AI?rithms _
[= =
« First in first out (FIFO)
—replace block that has been in cache longest
— Implemented as circular queue
« Least frequently used
—replace block which has had fewest hits
* Random
— Almost as good other choices

* LRU is often favored because of ease of
hardware implementation

= ====F|au}l - = -En . |
* When a block of memory about to be
overwritten in cache:
—No problem if not modified in cache
— Has to written back to main memory if modified
(dirty)
= Must not overwrite a cache block unless main
memory is up to date

= More than one device may have access to main
memory
—1/0 may address main memory directly
— If word altered in cache, then main memory is
invalid
— If word altered in memory, then cache is invalid
= Multiple CPUs may have individual caches

—Word altered in one cache may invalidate other
caches

= Simplest technique

= All writes go to main memory as well as cache

* Multiple CPUs can monitor main memory traffic
to keep local (to CPU) cache up to date (cache
coherency)

= Lots of memory traffic, slows down writes

Write back)
[z ===Vl — Eei
= Updates initially made in cache only
= Update bit for cache slot is set when update
occurs
= If block is to be replaced, write to main
memory only if update bit is set
— Other caches can get out of sync
= |/0 must access main memory through cache
= N.B. Typically 15% of memory references are
writes; but can be as high as 50% in some HPC
apps

Cache Coherenc
[

e In a bus organization with shared memory and
multiple caches coherency has to be maintained
between caches as well as cache and memory

e Possible approaches:

1. Bus watching with write through. Cache controller monitors
bus lines and detects writes to memory in cache. Requires
write-through policy for ALL cache controllers

2. Hardware transparency. Extra hardware ensures that a write
to one cache updates memory and all other caches

3. Noncacheable memory. Memory shared between processors is
designated as non-cacheable. All accesses to shared memory
are cache misses. Mem identified with chip-select logic or
high address bits

e More info in Ch. 18

13

Line Size
[E == T T I [
= When a cache line is filled it normally includes

more than the requested data - some adjacent
words are retrieved

= As block size increases, cache hit ratio will also
increase because of locality of reference - to a
limit

= If block size is too large, possibility of
reference to parts of block decreases; there
are fewer blocks in cache so more chance of
block being overwritten

Line Size
| —

P

; == DIl =
= Relationship between block size and hit ratio is
complex and program-dependent

= No optimal formula exists

* General purpose computing uses blocks of 8 to
64 bytes

* In HPC 64 and 128 byte lines are most common

Number of caches: multilevel caches
| B e

= With increased logic density caches can be on
same chip as processor

= Reduces external bus activity and speeds up
execution times

= No bus cycles; shorter data path is faster than
0-wait bus cycles

* Bus is free to do other transfers

Multilevel Caches
. D

= It is usually desirable to have external as well
as internal cache

= With only 1 level bus access to memory is slow

= Most contemporary computers have at least 2
levels
—Internal: Level 1 (L1)
— External: Level 2 (L2)

= External L2 cache typically built with fast
SRAM; uses separate and faster data bus

= Now incorporated on processor chip

P e

= Performance improvements depend on hit rates

= Complicates replacement algorithms and write
policy

= With L2 cache on-board L3 cache can improve
performance just as L2 can improve over L1
alone

= Split caches hav

e separate caches for
instructions and data
— These tend to be stored in different areas of
memory
« Pros of unified cache:

— Higher rate for given cache size because cache is
automatically balanced between instructions and
data

— Only one cache needs to implemented

14

Selit Qacrl1
. = 1T Tl | T
« Current trend favors split caches

— Useful for superscalar machines with parallel
execution of instructions and prefetching of
predicted instructions

— Split cache eliminates contention for cache between
instruction fetch/decode unit and the execution
unit (when accessing data)

— Helps to keep pipeline full because the EU will block
the fetch/decode unit otherwise

Pentium Cache E
-

80386 - no on chip cache
80486 - 8k using 16 byte lines and four way set
associative organization
Pentium (all versions) - two on chip L1 caches
— Data & instructions
Pentium IlI - L3 cache added off chip
Pentium 4
— L1 caches

- 8k bytes

- 64 byte lines

- four way set associative
— L2 cache

- Feeding both L1 caches

- 256k

- 128 byte lines

- 8 way set associative

— L3 cache on chip

Pentium Cache Evolution
|~

Processor on which
Feature First
Problem Solution Appears
Esternal memory slower than the system | A4 extemal cache using =5
e 3 s aster memory
technology.
Move external cache on- 86
Increased processor speed results in
g becon.\insge:dbomeneck for chip, operating at the
cache access RIS
processor.
Internal cache is rather small, due to Atcerm Tl oade #%0
limited space on chip NG taser iechmotosy
than main memory
Contention oceurs when both e Create separate data and Pentium
Instruction Prefetcher and the Execution | instruction caches
Unit simultaneously require access to the
cache. In that case, the Prefetcher i stalled
while the Execution Unit's data access
takes place
Create separate back-side Pentium Pro
bus that runs at higher
Tncreased processor speed results in ?m ‘sl:g‘e‘)"e‘;‘;]“:l bus.
external bus becoming a bottleneck for L2 | (7O 510e) external bus
cache access iy
Move L2 cache on to e Pentium IT
processor chi
Some applications deal with massive "Add external L3 cache Pentium IT
databases and must have rapid access to
Iarge amounts of data. The on-chip caches | Move L3 cache on-chip Pentium 4
are too small

Pentium 4 Block Diagram
[=

System Bus
Out-of-order CTEUETED Instruction
e cache (12K mops)
logic unit
64
| bits
L3 cache
(1 MB)
A
Integer register file le——>] FP register file]
Load Store Simple simple | | | complex FP/ FP 1
address| | address | | | integer integer integer MMX. move
unit unit ALU ALU ALU unit unit L2 cache
(512 KB)
L1 data cache (16 KB) |‘_/_1256
bits

18
* Fetch/Decode Unit
— Fetches instructions from L2 cache
— Decode into micro-ops
— Store micro-ops in L1 cache
« Out of order execution logic
— Schedules micro-ops
— Based on data dependence and resources
— May speculatively execute
« Execution units
— Execute micro-ops
— Data from L1 cache
— Results in registers
* Memory subsystem
— L2 cache and systems bus

Decodes instructions into RISC like micro-ops before L1 cache
Micro-ops fixed length

— Superscalar pipelining and scheduling
Pentium instructions long & complex
Performance improved by separating decoding from scheduling &
pipelining

— (More later - ch14)
Data cache is write back

— Can be configured to write through
L1 cache controlled by 2 bits in register

— CD = cache disable

— NW = not write through

— 2 instructions to invalidate (flush) cache and write back then
invalidate

L2 and L3 8-way set-associative
— Line size 128 bytes

15

Pentium 4 Cache
|~ B =

Operating Modes

ARM Cache Orga
| S

Control Bits Operating Mode

CD NW Cache Fills ‘Write Throughs Invalidates
0 0 Enabled Enabled Enabled
1 0 Disabled Enabled Enabled
1 1 Disabled Disabled Disabled

Note: CD = 0; NW = 1 is an invalid combination.

nization

= ARM3 started with 4KB of cache

= ARM design emphasis on few transistors and
small, low-power chips has kept cache fairly
small

ARM Cache Feat
| S

Core Cache | Cache | Cache | Associativity| Location | Write
Type | Size (kB) | Line Size Buffer
(words) Size
(words)
ARM720T Unified| 8 4 4way Logical B
ARMO20T Split | 16/16 DI 8 64way | Logical 16
ARMOXGELS | Split | 4-128/4- B +vay Logical 16
128D
ARMI022E Split_| 16/16 DI 8 64way | Logical 16
ARMIOGEL-S | Split | 4-128/4- 8 4way Logical B
128D/1
Tntel Split | 16/16 DT 4 32-way | Logical 32
StrongARM
Tntel Xscale Split | 3232 D 8 32way | Logical 32
ARMII36.JES | Split | 4-64/4-64 8 4way Physical 32
DI

Write Buffer
| B~

« Distinctive feature of ARM cache is a FIFO write

buffer between cache and main memory

= When data is written to a bufferable area of
memory, data are placed in write buffer at
CPU clock speed and CPU continues execution

* Write buffer performs memory write in parallel

with processor
= If write buffer is full then CPU is stalled until
write buffer drains

« Data from same addresses as write buffer
cannot be read until write is complete

16

