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Chapter 4
Cache Memory

Computer Organization and Architecture

Note: Appendix 4A will not be covered in class, but 
the material is interesting reading and may be used in 
some homework problems.

Characteristics of Memory Systems

Location

• CPU 
— Registers and control unit memory

• Internal
— Main memory and cache

• External
— Storage devices (paper tape, cards, tapes, discs, 

flash cards, etc.)

Capacity

• Word size
— The natural unit of organisation
— Typically number of bits used to represent an 

integer in the processor

• Number of words
— Most memory sizes are now expressed in bytes
— Most modern processors have byte-addressable 

memory but some have word addressable memory
— Memory capacity for A address lines is 2A

addressable units

Unit of Transfer

• Internal
— Usually governed by data bus width

• External
— Usually a block which is much larger than a word 

(typical disk 512 - 4096 bytes)

• Addressable unit
— Smallest location which can be uniquely addressed
— Some systems have only word addressable memory 

while many have byte addressable memory
— A block or even cluster of blocks on most disks

Access Methods (1)

• Sequential
— Start at the beginning and read through in order
— Access time depends on location of data and 

previous location
— e.g. tape

• Direct
— Individual blocks have unique address
— Access is by jumping to vicinity plus sequential 

search
— Access time depends on location and previous 

location
— e.g. disk
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Access Methods (2)

• Random
— Individual addresses identify locations exactly
— Access time is independent of location or previous 

access
— e.g. RAM

• Associative
— Data is located by a comparison with contents of a 

portion of the store
— Access time is independent of location or previous 

access
— All memory is checked simultaneously; access time 

is constant
— e.g. cache

Performance

• From user’s perspective the most important 
characteristics of memory are capacity and 
performance

• Three performance parameters:
— Access time 
— Cycle Time
— Transfer Rate

• Access time (latency)
— For RAM access time is the time between presenting an 

address to memory and getting the data on the bus
— For other memories the largest component is 

positioning the read/write mechanism

Performance

• Cycle Time
— Primarily applied to RAM; access time + additional 

time before a second access can start
— Function of memory components and system bus, not 

the processor

• Transfer Rate – the rate at which data can be 
transferred into or out of a memory unit
— For RAM   TR = 1 / (cycle time)

Transfer rate for other memories

• Tn = Ta + (n/r)   where

• Tn =Average time to read or write N bits
• Ta =Average access time
• n = number of bits
• r = transfer rate in bits / second

Physical Types of Memory

• Semiconductor
— RAM (volatile or non-volatile)

• Magnetic Surface Memory
— Disk & Tape

• Optical
— CD & DVD

• Others
— Magneto-optical
— Bubble
— Hologram

Physical Characteristics

• Volatility
— Does the memory retain data in the absence of 

electrical power?

• Decay
— Ranges from tiny fractions of a second (volatile 

DRAM) to many years (CDs, DVDs)

• Erasable
— Can the memory be rewritten? If so, how fast? How 

many erase cycles can occur?

• Power consumption
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Organization

• Physical arrangement of bits into words
• Not always obvious, e.g., interleaved memory 

(examples later)

Memory Hierarchy

• For any memory: 
— How fast? 
— How much? 
— How expensive?

• Faster memory => greater cost per bit
• Greater capacity => smaller cost / bit
• Greater capacity => slower access
• Going down the hierarchy:

— Decreasing cost / bit
— Increasing capacity
— Increasing access time 
— Decreasing frequency of access by processor

Memory Hierarchy - Diagram Memory Hierarchy

• Registers
— In CPU

• Internal or Main memory
— May include one or more levels of cache
— “RAM”

• External memory
— Backing store

Hierarchy List

• Registers
• L1 Cache
• L2 Cache
• Main memory
• Disk cache
• Magnetic Disk
• Optical
• Tape
• (and we could mention punch cards, etc at the 

very bottom)

Locality of Reference

• Two or more levels of memory can be used to 
produce average access time approaching the 
highest level

• The reason that this works well is called 
“locality of reference”

• In practice memory references (both instructions 
and data) tend to cluster
— Instructions: iterative loops and repetitive subroutine 

calls
— Data: tables, arrays, etc. Memory references cluster 

in short run
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Cache

• A small amount of fast memory that sits 
between normal main memory and CPU

• May be located on CPU chip or module
• Intended to allow access speed approaching 

register speed
• When processor attempts to read a word from 

memory, cache is checked first

Cache Memory Principles

• If data sought is not present in cache, a block 
of memory of fixed size is read into the cache

• Locality of reference makes it likely that other 
words in the same block will be accessed soon

Cache and Main Memory A Simple two-level cache

• Level 1: 1000 words, 0.01s
• Level 2: 100,000 words 0.1s
• If word in L1 processor has direct access else 

word copied from L2 into L1 
• Av Access Time as function of hit ratio H:

H * 0.01s + (1-H)* 0.11s

• With H near 1 access time approaches 0.01s

Two-level cache performance Two-level disk access

• Principles of two-level memories can be 
applied to disk as well as RAM

• A portion of main memory can be used as a disk 
cache
— Allows disk writes to be clustered; largest 

component of disk access time is seek time
— Dirty (modified) datamay be requested by the 

program before it is even written back to disk
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Cache/Main Memory Structure Cache view of memory

• N address lines => 2n words of memory
• Cache stores fixed length blocks of K words 
• Cache views memory as an array of M blocks 

where M = 2n/K
• A block of memory in cache is referred to as a 

line. K is the line size
• Cache size of C blocks where C < M 

(considerably)
• Each line includes a tag that identifies the 

block being stored
• Tag is usually upper portion of memory address

Cache operation – overview

• CPU requests contents of memory location
• Check cache for this data
• If present, get from cache (fast)
• If not present, read required block from main 

memory to cache
• Then deliver from cache to CPU
• Cache includes tags to identify which block of 

main memory is in each cache slot

Cache Read Operation - Flowchart

Typical Cache Organization Cache organization

• The preceding diagram illustrates a shared 
connection between the processor, the cache 
and the system bus (look-aside cache)

• Another way to organize this system is to 
interpose the cache between the processor and 
the system bus for all lines (look-through 
cache)
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Elements of Cache Design
• Addresses (logical or physical)
• Size 
• Mapping Function (direct, assoociative, set associative)
• Replacement Algorithm (LRU, LFU, FIFO, random)
• Write Policy (write through, write back, write once)
• Line Size
• Number of Caches (how many levels, unified or split)

Note that cache design for High Performance Computing (HPC) is very 
different from cache design for other computers
Some HPC applications perform poorly with typical cache designs

Cache Size does matter

• Cost
— More cache is expensive
— Would like cost/bit to approach cost of main 

memory

• Speed
— But we want speed to approach cache speed for all 

memory access
— More cache is faster (up to a point)
— Checking cache for data takes time
— Larger caches are slower to operate

Comparison of Cache Sizes Virtual Memory

• Almost all modern processors support virtual 
memory (Ch 8)

• Virtual memory allows a program to treat its 
memory space as single contiguous block that 
may be considerably larger than main memory

• A memory management unit takes care of the 
mapping between virtual and physical 
addresses

Logical Cache

• A logical (virtual) cache stores virtual 
addresses rather than physical addresses

• Processor addresses cache directly without 
going through MMU

• Obvious advantage is that addresses do not 
have to be translated by the MMU

• A not-so-obvious disadvantage is that all 
processes have the same virtual address space –
a block of memory starting at 0 
— The same virtual address in two processes usually 

refers to different physical addresses 
— So either flush cache with every context switch or 

add extra bits

Logical and Physical Cache



7

Look-aside and Look-through

• Look-aside cache is parallel with main memory
• Cache and main memory both see the bus cycle

— Cache hit: processor loaded from cache, bus cycle 
terminates

— Cache miss: processor AND cache loaded from 
memory in parallel

• Pro: less expensive, better response to cache 
miss

• Con: Processor cannot access cache while 
another bus master accesses memory

Look-through cache

• Cache checked first when processor requests 
data from memory
— Hit: data loaded from cache
— Miss: cache loaded from memory, then processor 

loaded from cache 

• Pro: 
— Processor can run on cache while another bus 

master uses the bus

• Con:
— More expensive than look-aside, cache misses slower

Mapping Function

• There are fewer cache lines than memory 
blocks so we need
— An algorithm for mapping memory into cache lines
— A means to determine which memory block is in 

which cache line

• Example elements:
— Cache of 64kByte
— Cache block of 4 bytes

– i.e. cache is 16k (214) lines of 4 bytes

— 16MBytes main memory
— 24 bit address (224=16M)

(note: Pentium cache line = 32 bytes until Pentium 4 (128 bytes))

Direct Mapping
• Each block of main memory maps to only one cache 

line
— i.e. if a block is in cache, it must be in one specific place

• Mapping function is i = j modulo m 
(i = j % m) where 

i = cache line number
j = main memory block number
m = number of cache lines

• Address is in two parts
• Least Significant w bits identify unique word
• Most Significant s bits specify one memory block
• The MSBs are split into a cache line field r and a tag of 

s-r bits (most significant)

Direct Mapping Address Structure

Tag  s-r Line or Slot  r Word  w

8 14 2

• 24 bit address, 2 bit word identifier (4 byte block)
• 22 bit block identifier (s)

— 8 bit tag (=22-14) and 14 bit slot or line
— Example: AB1402 tag=AB line=0500 word=2

Note: 1402 = 0001 0100 0000 0010

Remove l.s. 2 bits = 0001 0100 0000 00 = 00 0101 0000 0000 = 0500

• There are 2s blocks in memory
• No two blocks with the same line number can have the same Tag field

— AC1400, 041403, C71401 …

• Check contents of cache by finding line and checking Tag
— Line is 0500 for all of these
— If mem request is AB1402 tag at 0500 must = AB

Direct Mapping

• Parking lot analogy: think of the cache as a 
parking lot, with spaces numbered 0000-9999

• With a 9 digit student id, we could assign 
parking spaces based on the middle 4 digits: 
xxx PPPP yy

• Easy to find your parking space
• Problem if another student is already there!

• Note that with memory addresses, the middle
bits are used as a line number
— Locality of reference suggests that memory 

references close in time will have the same high-
order bits
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Direct Mapping Cache Organization
Example

Direct Mapping Summary

• Address length = (s + w) bits where w = 
log2(block size)

• Number of addressable units = 2s+w words or 
bytes

• Block size = line size = 2w words or bytes
• Number of blocks in main memory 

= 2s+ w/2w = 2s

• Size of line field is r bits
— Number of lines in cache = m = 2r

— Size of tag = (s – r) bits

• Size of cache 2r+w bytes or words

Direct Mapping Cache Line Table
Cache line Main Memory blocks held
• 0 0, m, 2m, 3m…2s-m
• 1 1,m+1, 2m+1…2s-m+1
• …
• m-1 m-1, 2m-1,3m-1…2s-1

• 0 000000,010000,…,FF0000
• 1 000004,010004,…,FF0004
• …
• m-1 00FFFC,01FFFC,…,FFFFFC 

Direct Mapping Pros & Cons

• Pro
— Simple
— Inexpensive

• Con
— Fixed location for given block
— If a program accesses 2 blocks that map to the same 

line repeatedly, cache misses are very high 
(thrashing)

• Victim cache
— A solution to direct mapped cache thrashing
— Discarded lines are stored in a small “victim” cache 

(4 to 16 lines)
— Victim cache is fully associative and resides 

between L1 and next level of memory

Associative Mapping

• A main memory block can load into any line of 
cache

• Memory address is interpreted as 2 fields: tag 
and word

• Tag uniquely identifies block of memory
• Every line’s tag is examined simultaneously for a 

match
— Cache searching gets expensive because a comparator 

must be wired to each tag
— A comparator consists of XNOR gates (true when both 

inputs are true)
— Complexity of comparator circuits makes fully 

associative cache expensive 
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Associative Mapping

• Because no bit field in the address specifies a 
line number the cache size is not determined 
by the address size

• Associative-mapped memory is also called 
“content-addressable memory.”

• Items are found not by their address but by 
their content
— Used extensively in routers and other network 

devices
— Corresponds to associative arrays in Perl and other 

languages

• Primary disadvantage is the cost of circuitry

Direct Mapping compared to Associative

Tag   22 bit
Word
2 bit

Associative Mapping Address Structure

• 22 bit tag stored with each 32 bit block of data
• Compare tag field with tag entry in cache to check for 

hit
• Least significant 2 bits of address identify which 16 bit 

word is required from 32 bit data block
• e.g.

— Address Tag Data Cache line
— FFFFFD FFFFFC 24682468 3FFF

Fully Associative Cache Organization

Example
Associative Mapping

• Parking lot analogy: there are more permits than 
spaces

• Any student can park in any space
• Makes full use of parking lot

— With direct mapping many spaces may be unfilled

• Note that associative mapping allows flexibility 
in choice of replacement blocks when cache is 
full 

• Discussed below
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Associative Mapping Summary

• Address length = (s + w) bits where w = 
log2(block size)

• Number of addressable units = 2s+w words or 
bytes

• Block size = line size = 2w words or bytes
• Number of blocks in main memory 

= 2s+ w/2w = 2s

• Number of lines in cache = undetermined
• Size of tag = s bits

Set Associative Mapping

• A compromise that provides strengths of both 
direct and associative approaches 

• Cache is divided into a number of sets of lines
• Each set contains a fixed number of lines
• A given block maps to any line in a given set 

determined by that block’s address
— e.g. Block B can be in any line of set i

• e.g. 2 lines per set
— 2-way associative mapping
— A given block can be in one of 2 lines in only one set

Set Associative Mapping

• m = v * k 
— Where m = number of lines in cache, v = number of 

sets and k = lines/set
— Lines in cache = sets * lines per set

• i = j modulo v
— Where I = set number and j = main memory block 

number
— Set number = block number % number of sets

• This is referred to as a “k-way” set associative 
mapping

• Block Bi can be mapped only into lines of set j.

Set Associative Mapping: Parking Analogy

• If we have 10,000 parking spaces we can divide 
them into 1000 sets of 10 spaces each 

• Still use middle digits of id to find your parking 
place set: xxx PPP yyy

• You have a choice of any place in your set
• Our parking lots actually work like this, but the 

sets are fairly large: Fac/Staff; Commuter; 
Resident; Visitor

Set Associative Mapping Example

• Assume 13 bit set number
• Block number in main memory is modulo 213

(0010 0000 0000 0000 = 2000h
• 000000, 002000, 004000, … map to same set

K-Way Set Associative Cache Organization
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Set Associative Mapping Address Structure

• Cache control logic sees address as three fields: tag, 
set and word

• Use set field to determine cache set to look in
• Compare tag field to see if we have a hit
• e.g

— Address Tag Data Set number
— 1FF 7FFC 1FF 12345678 1FFF
— 001 7FFC 001 11223344 1FFF

• Tags are much smaller than fully associative memories 
and comparators for simultaneous lookup are much less 
expensive

Tag  9 bit Set  13 bit
Word
2 bit

Example

Set Associative Mapping Summary
• For a k-way set associative cache with v sets (each set 

contains k lines):
— Address length = (t+d+w) bits where w = log2(block size) and d 

= log2(v) 
— Number of addressable units = 2t+d+w words or bytes
— Size of tag = t bits
— Block size = line size = 2w words or bytes
— Number of blocks in main memory = 2t+d

— Number of lines in set = k
— Number of sets = v = 2d

— Number of lines in cache = kv = k * 2d

Tag  (t bits) Set  (d bits)
Word
(w bits)

Additional Notes

• Where v (# sets) = m (# lines in cache) and k = 
1 (one line/set) then set associative mapping 
reduces to direct mapping

• For v=1 (one set) and k=m (# sets = # lines) it 
reduces to pure associative mapping

• 2 lines/set; v=m/2, k=2 is quite common. 
• Significant improvement in hit ratio over direct 

mapping
• Four-way mapping v=m/4, k=4 provides further 

modest improvement

Set Associative Mapping Implementation

• A set associative cache can be implemented as 
k direct mapped caches OR as v associative 
caches

• With k direct mapped caches each direct 
mapped cache is referred to as a way

• The direct mapped implementation is used for 
small degrees of associativity (small k) and the 
associative mapped implementation for higher 
degrees. 

Direct mapped implementation



12

Associative Mapped Implementation Varying associativity over cache size

Cache replacement algorithms

• When a line is read from memory it replaces 
some other line already in cache 

• Other than direct mapping, there are choices 
for replacement algorithm

• Any given choice can result in a great speedup 
for one program and slow-down for some other 
program

• There is no “best choice” that works for all 
programs

Replacement Algorithms (1)
Direct mapping

• No choice
• Each block only maps to one line
• Replace that line

Replacement Algorithms (2)
Associative & Set Associative

• Algorithm is hardware implemented for speed
• Least Recently used (LRU) assumes locality of 

reference so most recently used is likely to be 
used again

• LRU is easy for 2-way set associative cache
— Each line has a USE bit
— When a line is referenced, set USE bit to 1 and set 

the USE bit for the other line to 0 
— Replace the block whose USE bit is 0

• Implemented in fully-associative caches by 
keeping list of lines
— Most recently referenced lines goes to head of list

MRU replacement

• Most Recently Used (MRU) would seem to be an 
improbable algorithm 

• It is useful for some specialized caches where 
the type of code executing is known (example: 
database index scan)
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Other Algorithms

• First in first out (FIFO)
— replace block that has been in cache longest
— Implemented as circular queue

• Least frequently used
— replace block which has had fewest hits

• Random
— Almost as good other choices

• LRU is often favored because of ease of 
hardware implementation

Write Policy

• When a block of memory about to be 
overwritten in cache:
— No problem if not modified in cache
— Has to written back to main memory if modified 

(dirty)

• Must not overwrite a cache block unless main 
memory is up to date

Problems with dirty memory

• More than one device may have access to main 
memory
— I/O may address main memory directly 
— If word altered in cache, then main memory is 

invalid
— If word altered in memory, then cache is invalid

• Multiple CPUs may have individual caches
— Word altered in one cache may invalidate other 

caches

Write through

• Simplest technique
• All writes go to main memory as well as cache
• Multiple CPUs can monitor main memory traffic 

to keep local (to CPU) cache up to date (cache 
coherency)

• Lots of memory traffic, slows down writes

Write back

• Updates initially made in cache only
• Update bit for cache slot is set when update 

occurs
• If block is to be replaced, write to main 

memory only if update bit is set
— Other caches can get out of sync

• I/O must access main memory through cache
• N.B. Typically 15% of memory references are 

writes; but can be as high as 50% in some HPC 
apps

Cache Coherency
• In a bus organization with shared memory and 

multiple caches coherency has to be maintained 
between caches as well as cache and memory

• Possible approaches:
1. Bus watching with write through. Cache controller monitors 

bus lines and detects writes to memory in cache. Requires 
write-through policy for ALL cache controllers

2. Hardware transparency. Extra hardware ensures that a write 
to one cache updates memory and all other caches

3. Noncacheable memory. Memory shared between processors is 
designated as non-cacheable. All accesses to shared memory 
are cache misses. Mem identified with chip-select logic or 
high address bits

• More info in Ch. 18
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Line Size

• When a cache line is filled it normally includes 
more than the requested data – some adjacent 
words are retrieved

• As block size increases, cache hit ratio will also 
increase because of locality of reference – to a 
limit

• If block size is too large, possibility of 
reference to parts of block decreases; there 
are fewer blocks in cache so more chance of 
block being overwritten

Line Size

• Relationship between block size and hit ratio is 
complex and program-dependent 

• No optimal formula exists
• General purpose computing uses blocks of 8 to 

64 bytes
• In HPC 64 and 128 byte lines are most common 

Number of caches: multilevel caches

• With increased logic density caches can be on 
same chip as processor

• Reduces external bus activity and speeds up 
execution times

• No bus cycles; shorter data path is faster than 
0-wait bus cycles

• Bus is free to do other transfers

Multilevel Caches

• It is usually desirable to have external as well 
as internal cache

• With only 1 level bus access to memory is slow
• Most contemporary computers have at least 2 

levels
— Internal: Level 1 (L1)
— External: Level 2 (L2)

• External L2 cache typically built with fast 
SRAM; uses separate and faster data bus

• Now incorporated on processor chip

L2 and L3 Cache

• Performance improvements depend on hit rates
• Complicates replacement algorithms and write 

policy
• With L2 cache on-board L3 cache can improve 

performance just as L2 can improve over L1 
alone

Unified and Split Caches

• Split caches have separate caches for 
instructions and data
— These tend to be stored in different areas of 

memory

• Pros of unified cache:
— Higher rate for given cache size because cache is 

automatically balanced between instructions and 
data

— Only one cache needs to implemented
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Split Cache

• Current trend favors split caches
— Useful for superscalar machines with parallel 

execution of instructions and prefetching of 
predicted instructions

— Split cache eliminates contention for cache between 
instruction fetch/decode unit and the execution 
unit (when accessing data)

— Helps to keep pipeline full because the EU will block 
the fetch/decode unit otherwise

Pentium Cache Evolution
• 80386 – no on chip cache
• 80486 – 8k using 16 byte lines and four way set 

associative organization
• Pentium (all versions) – two on chip L1 caches

— Data & instructions

• Pentium III – L3 cache added off chip
• Pentium 4

— L1 caches
– 8k bytes
– 64 byte lines
– four way set associative

— L2 cache 
– Feeding both L1 caches
– 256k
– 128 byte lines
– 8 way set associative

— L3 cache on chip

Pentium Cache Evolution Pentium 4 Block Diagram

Pentium 4 Core Processor
• Fetch/Decode Unit

— Fetches instructions from L2 cache
— Decode into micro-ops
— Store micro-ops in L1 cache

• Out of order execution logic
— Schedules micro-ops
— Based on data dependence and resources
— May speculatively execute

• Execution units
— Execute micro-ops
— Data from L1 cache
— Results in registers

• Memory subsystem
— L2 cache and systems bus

Pentium 4 Design Reasoning
• Decodes instructions into RISC like micro-ops before L1 cache
• Micro-ops fixed length

— Superscalar pipelining and scheduling

• Pentium instructions long & complex
• Performance improved by separating decoding from scheduling & 

pipelining
— (More later – ch14)

• Data cache is write back
— Can be configured to write through

• L1 cache controlled by 2 bits in register
— CD = cache disable
— NW = not write through
— 2 instructions to invalidate (flush) cache and write back then 

invalidate

• L2 and L3 8-way set-associative 
— Line size 128 bytes
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Pentium 4 Cache Operating Modes ARM Cache Organization

• ARM3 started with 4KB of cache
• ARM design emphasis on few transistors and 

small, low-power chips has kept cache fairly 
small

ARM Cache Features Write Buffer

• Distinctive feature of ARM cache is a FIFO write 
buffer between cache and main memory

• When data is written to a bufferable area of 
memory, data are placed in write buffer at 
CPU clock speed and CPU continues execution

• Write buffer performs memory write in parallel 
with processor

• If write buffer is full then CPU is stalled until 
write buffer drains

• Data from same addresses as write buffer 
cannot be read until write is complete


